Abstract

The process-parameter-dependent optical and structural properties of MgO–Al2O3–ZrO2 ternary mixed-composite material were investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases, and process-dependent material composition of films were investigated through the use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. Energy-dispersive x-ray analysis made evident the correlation between the optical constants and the process-dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Pulker, K. H. Guenther, “Reactive physical vapor deposition processes,” in Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, New York, 1995), Chap. 4, pp. 91–115.
  2. M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
    [CrossRef]
  3. S. Ogura, “Dynamic characteristics in optically inhomogeneous films,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 377–388 (1992).
    [CrossRef]
  4. P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
    [CrossRef]
  5. D. M. Sanders, E. N. Farabaugh, W. K. Haller, “Glassy optical coatings by multisource evaporation,” in Thin Film Technologies and Special Applications, W. R. Hunter, ed., Proc. SPIE346, 31–38 (1982).
    [CrossRef]
  6. J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, C.-H. Chen, “Mixed films of TiO2–SiO2 deposited by double electron-beam coevaporation,” Appl. Opt. 35, 90–96 (1996).
    [CrossRef] [PubMed]
  7. Y. Tsou, F. C. Ho, “Optical properties of hafnia and coevaporated hafnia:magnesium fluoride films,” Appl. Opt. 35, 5091–5094 (1996).
    [CrossRef] [PubMed]
  8. R.-Y. Tsai, M.-Y. Hua, F. C. Ho, “Influences of the deposition rate on the microstructure and hardness of composite films by reactive ion-assisted coevaporation,” Opt. Eng. 34, 3075–3082 (1995).
    [CrossRef]
  9. S. M. Edlou, A. Smajkiewicz, G. A. Al-Jumaily, “Optical properties and environmental stability of oxide coatings deposited by reactive sputtering,” Appl. Opt. 32, 5601–5605 (1993).
    [CrossRef] [PubMed]
  10. A. Zöller, R. Götzelmann, K. Matl, D. Cushing, “Temperature-stable bandpass filters deposited with plasma ion-assisted deposition,” Appl. Opt. 35, 5609–5612 (1996).
    [CrossRef] [PubMed]
  11. M. Cevro, G. Carter, “Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995).
    [CrossRef]
  12. N. K. Sahoo, A. P. Shapiro, “Process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite films evaporated from the solid solution,” Appl. Opt. 37, 698–718 (1998).
    [CrossRef]
  13. E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983).
    [CrossRef]
  14. S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).
  15. W.-C. Tsai, T.-Y. Tseng, “Characterization of yttria-stabilized zirconia thin films grown by planar magnetron sputtering,” Thin Solid Films 306, 86–91 (1997).
    [CrossRef]
  16. F. Jones, “High-rate reactive sputter deposition of zirconium dioxide,” J. Vac. Sci. Technol. A 6, 3088–3097 (1988).
    [CrossRef]
  17. D. Reicher, K. Jungling, “Influence of crystal structure on the light scatter of zirconium oxide films,” Appl. Opt. 36, 1626–1637 (1997).
    [CrossRef] [PubMed]
  18. R. H. J. Hannink, “Growth morphology of the tetragonal phase in partially stabilized zirconia,” J. Mater. Sci. 13, 2487–2496 (1978).
    [CrossRef]
  19. D. L. Porter, A. H. Heuer, “Microstructural development in MgO-stabilized zirconia (Mg-PSZ),” J. Am. Ceram. Soc. 62, 298–305 (1979).
    [CrossRef]
  20. C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
    [CrossRef]
  21. O. Ruff, F. Ebert, “Ceramics of highly refractory materials,” Z. Anorg. Allgem. Chem. 180, 19–41 (1929).
    [CrossRef]
  22. P. Duwez, F. Odell, “Phase relationships in the system zirconia-ceria,” J. Am. Ceram. Soc. 33, 274–283 (1950).
    [CrossRef]
  23. N. K. Sahoo, K. V. S. R. Apparao, “Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications,” Appl. Phys. A 63, 195–202 (1996).
  24. D. Minkov, R. Swanepoel, “Computer drawing of the envelopes of spectra with interference,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 212–220 (1992).
    [CrossRef]
  25. A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, J. A. Dobrowolski, “Influence of small inhomogeneities on the spectral characteristics of single thin films,” Appl. Opt. 36, 7188–7198 (1997).
    [CrossRef]
  26. J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Appl. Opt. 21, 4020–4029 (1982).
    [CrossRef] [PubMed]
  27. B. Bovard, F. J. Van Milligen, M. J. Messerly, S. G. Saxe, H. A. Macleod, “Optical constants derivation for an inhomogeneous thin film from in situ transmission measurements,” Appl. Opt. 24, 1803–1807 (1985).
    [CrossRef] [PubMed]
  28. E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
    [CrossRef]
  29. A. Duparré, S. Jakobs, “Combination of surface characterization techniques for investigating optical thin-film components,” Appl. Opt. 35, 5052–5058 (1996).
    [CrossRef] [PubMed]
  30. F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284–285, 439–443 (1996).
  31. H. K. Pulker, Coatings on Glass, 2nd ed. (Elsevier, New York, 1984), Chap. 8, pp. 351.
  32. R. S. Sennett, G. D. Scott, “The structure of evaporated metal films and their optical properties,” J. Opt. Soc. Am. 40, 203–211 (1950).
    [CrossRef]

1998 (1)

1997 (3)

1996 (7)

N. K. Sahoo, K. V. S. R. Apparao, “Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications,” Appl. Phys. A 63, 195–202 (1996).

A. Duparré, S. Jakobs, “Combination of surface characterization techniques for investigating optical thin-film components,” Appl. Opt. 35, 5052–5058 (1996).
[CrossRef] [PubMed]

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284–285, 439–443 (1996).

S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).

J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, C.-H. Chen, “Mixed films of TiO2–SiO2 deposited by double electron-beam coevaporation,” Appl. Opt. 35, 90–96 (1996).
[CrossRef] [PubMed]

Y. Tsou, F. C. Ho, “Optical properties of hafnia and coevaporated hafnia:magnesium fluoride films,” Appl. Opt. 35, 5091–5094 (1996).
[CrossRef] [PubMed]

A. Zöller, R. Götzelmann, K. Matl, D. Cushing, “Temperature-stable bandpass filters deposited with plasma ion-assisted deposition,” Appl. Opt. 35, 5609–5612 (1996).
[CrossRef] [PubMed]

1995 (2)

M. Cevro, G. Carter, “Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995).
[CrossRef]

R.-Y. Tsai, M.-Y. Hua, F. C. Ho, “Influences of the deposition rate on the microstructure and hardness of composite films by reactive ion-assisted coevaporation,” Opt. Eng. 34, 3075–3082 (1995).
[CrossRef]

1993 (2)

S. M. Edlou, A. Smajkiewicz, G. A. Al-Jumaily, “Optical properties and environmental stability of oxide coatings deposited by reactive sputtering,” Appl. Opt. 32, 5601–5605 (1993).
[CrossRef] [PubMed]

E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
[CrossRef]

1988 (1)

F. Jones, “High-rate reactive sputter deposition of zirconium dioxide,” J. Vac. Sci. Technol. A 6, 3088–3097 (1988).
[CrossRef]

1987 (1)

C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
[CrossRef]

1985 (1)

1984 (1)

P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[CrossRef]

1983 (1)

E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983).
[CrossRef]

1982 (1)

1979 (2)

D. L. Porter, A. H. Heuer, “Microstructural development in MgO-stabilized zirconia (Mg-PSZ),” J. Am. Ceram. Soc. 62, 298–305 (1979).
[CrossRef]

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

1978 (1)

R. H. J. Hannink, “Growth morphology of the tetragonal phase in partially stabilized zirconia,” J. Mater. Sci. 13, 2487–2496 (1978).
[CrossRef]

1950 (2)

P. Duwez, F. Odell, “Phase relationships in the system zirconia-ceria,” J. Am. Ceram. Soc. 33, 274–283 (1950).
[CrossRef]

R. S. Sennett, G. D. Scott, “The structure of evaporated metal films and their optical properties,” J. Opt. Soc. Am. 40, 203–211 (1950).
[CrossRef]

1929 (1)

O. Ruff, F. Ebert, “Ceramics of highly refractory materials,” Z. Anorg. Allgem. Chem. 180, 19–41 (1929).
[CrossRef]

Al-Jumaily, G. A.

Apparao, K. V. S. R.

N. K. Sahoo, K. V. S. R. Apparao, “Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications,” Appl. Phys. A 63, 195–202 (1996).

Biscarini, F.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284–285, 439–443 (1996).

Borgogno, J. P.

Bouamrane, F.

E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
[CrossRef]

Bovard, B.

Brédas, J. L.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284–285, 439–443 (1996).

Carter, G.

M. Cevro, G. Carter, “Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995).
[CrossRef]

Cevro, M.

M. Cevro, G. Carter, “Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995).
[CrossRef]

Chao, S.

Chen, C.-H.

Chen, J.-S.

Cushing, D.

Daous, M. A.

E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
[CrossRef]

Dobrowolski, J. A.

Duparré, A.

Duwez, P.

P. Duwez, F. Odell, “Phase relationships in the system zirconia-ceria,” J. Am. Ceram. Soc. 33, 274–283 (1950).
[CrossRef]

Ebert, F.

O. Ruff, F. Ebert, “Ceramics of highly refractory materials,” Z. Anorg. Allgem. Chem. 180, 19–41 (1929).
[CrossRef]

Edlou, S. M.

Farabaugh, E. N.

E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983).
[CrossRef]

D. M. Sanders, E. N. Farabaugh, W. K. Haller, “Glassy optical coatings by multisource evaporation,” in Thin Film Technologies and Special Applications, W. R. Hunter, ed., Proc. SPIE346, 31–38 (1982).
[CrossRef]

Gilmore, C. M.

C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
[CrossRef]

Gosset, C. R.

C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
[CrossRef]

Götzelmann, R.

Guenther, K. H.

H. K. Pulker, K. H. Guenther, “Reactive physical vapor deposition processes,” in Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, New York, 1995), Chap. 4, pp. 91–115.

Hallak, A. B.

E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
[CrossRef]

Haller, W. K.

D. M. Sanders, E. N. Farabaugh, W. K. Haller, “Glassy optical coatings by multisource evaporation,” in Thin Film Technologies and Special Applications, W. R. Hunter, ed., Proc. SPIE346, 31–38 (1982).
[CrossRef]

Hannink, R. H. J.

R. H. J. Hannink, “Growth morphology of the tetragonal phase in partially stabilized zirconia,” J. Mater. Sci. 13, 2487–2496 (1978).
[CrossRef]

Harris, M.

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

Heuer, A. H.

D. L. Porter, A. H. Heuer, “Microstructural development in MgO-stabilized zirconia (Mg-PSZ),” J. Am. Ceram. Soc. 62, 298–305 (1979).
[CrossRef]

Ho, F. C.

Y. Tsou, F. C. Ho, “Optical properties of hafnia and coevaporated hafnia:magnesium fluoride films,” Appl. Opt. 35, 5091–5094 (1996).
[CrossRef] [PubMed]

R.-Y. Tsai, M.-Y. Hua, F. C. Ho, “Influences of the deposition rate on the microstructure and hardness of composite films by reactive ion-assisted coevaporation,” Opt. Eng. 34, 3075–3082 (1995).
[CrossRef]

Hua, M.-Y.

R.-Y. Tsai, M.-Y. Hua, F. C. Ho, “Influences of the deposition rate on the microstructure and hardness of composite films by reactive ion-assisted coevaporation,” Opt. Eng. 34, 3075–3082 (1995).
[CrossRef]

Jakobs, S.

Jones, F.

F. Jones, “High-rate reactive sputter deposition of zirconium dioxide,” J. Vac. Sci. Technol. A 6, 3088–3097 (1988).
[CrossRef]

Jungling, K.

Kao, J.-S.

Khan, H. R.

S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).

Khawaja, E. E.

E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
[CrossRef]

Lauria, A.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284–285, 439–443 (1996).

Lazarides, B.

Lazzaroni, R.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284–285, 439–443 (1996).

Lubitz, P.

S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).

Macleod, H. A.

B. Bovard, F. J. Van Milligen, M. J. Messerly, S. G. Saxe, H. A. Macleod, “Optical constants derivation for an inhomogeneous thin film from in situ transmission measurements,” Appl. Opt. 24, 1803–1807 (1985).
[CrossRef] [PubMed]

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

Martin, P. J.

P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[CrossRef]

Matl, K.

Messerly, M. J.

Minkov, D.

D. Minkov, R. Swanepoel, “Computer drawing of the envelopes of spectra with interference,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 212–220 (1992).
[CrossRef]

Netterfield, R. P.

P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[CrossRef]

Nguyen, N. V.

S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).

Niu, H.

Odell, F.

P. Duwez, F. Odell, “Phase relationships in the system zirconia-ceria,” J. Am. Ceram. Soc. 33, 274–283 (1950).
[CrossRef]

Ogura, S.

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

S. Ogura, “Dynamic characteristics in optically inhomogeneous films,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 377–388 (1992).
[CrossRef]

Ostoja, P.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284–285, 439–443 (1996).

Pelletier, E.

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Appl. Opt. 21, 4020–4029 (1982).
[CrossRef] [PubMed]

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

Porter, D. L.

D. L. Porter, A. H. Heuer, “Microstructural development in MgO-stabilized zirconia (Mg-PSZ),” J. Am. Ceram. Soc. 62, 298–305 (1979).
[CrossRef]

Pulker, H. K.

H. K. Pulker, K. H. Guenther, “Reactive physical vapor deposition processes,” in Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, New York, 1995), Chap. 4, pp. 91–115.

H. K. Pulker, Coatings on Glass, 2nd ed. (Elsevier, New York, 1984), Chap. 8, pp. 351.

Qadri, S. B.

S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).

C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
[CrossRef]

Quinn, C.

C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
[CrossRef]

Reicher, D.

Ruff, O.

O. Ruff, F. Ebert, “Ceramics of highly refractory materials,” Z. Anorg. Allgem. Chem. 180, 19–41 (1929).
[CrossRef]

Sahoo, N. K.

N. K. Sahoo, A. P. Shapiro, “Process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite films evaporated from the solid solution,” Appl. Opt. 37, 698–718 (1998).
[CrossRef]

N. K. Sahoo, K. V. S. R. Apparao, “Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications,” Appl. Phys. A 63, 195–202 (1996).

Sainty, W. G.

P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[CrossRef]

Salim, M. A.

E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
[CrossRef]

Samorí, P.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284–285, 439–443 (1996).

Sanders, D. M.

E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983).
[CrossRef]

D. M. Sanders, E. N. Farabaugh, W. K. Haller, “Glassy optical coatings by multisource evaporation,” in Thin Film Technologies and Special Applications, W. R. Hunter, ed., Proc. SPIE346, 31–38 (1982).
[CrossRef]

Saxe, S. G.

Scott, G. D.

Sennett, R. S.

Shapiro, A. P.

Skelton, E. F.

S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).

C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
[CrossRef]

Smajkiewicz, A.

Sullivan, B. T.

Swanepoel, R.

D. Minkov, R. Swanepoel, “Computer drawing of the envelopes of spectra with interference,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 212–220 (1992).
[CrossRef]

Taliani, C.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284–285, 439–443 (1996).

Tikhonravov, A. V.

Trubetskov, M. K.

Tsai, R.-Y.

R.-Y. Tsai, M.-Y. Hua, F. C. Ho, “Influences of the deposition rate on the microstructure and hardness of composite films by reactive ion-assisted coevaporation,” Opt. Eng. 34, 3075–3082 (1995).
[CrossRef]

Tsai, W.-C.

W.-C. Tsai, T.-Y. Tseng, “Characterization of yttria-stabilized zirconia thin films grown by planar magnetron sputtering,” Thin Solid Films 306, 86–91 (1997).
[CrossRef]

Tseng, T.-Y.

W.-C. Tsai, T.-Y. Tseng, “Characterization of yttria-stabilized zirconia thin films grown by planar magnetron sputtering,” Thin Solid Films 306, 86–91 (1997).
[CrossRef]

Tsou, Y.

Van Milligen, F. J.

Vidal, B.

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

Viville, P.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284–285, 439–443 (1996).

Zamboni, R.

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284–285, 439–443 (1996).

Zöller, A.

Appl. Opt. (10)

J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, C.-H. Chen, “Mixed films of TiO2–SiO2 deposited by double electron-beam coevaporation,” Appl. Opt. 35, 90–96 (1996).
[CrossRef] [PubMed]

Y. Tsou, F. C. Ho, “Optical properties of hafnia and coevaporated hafnia:magnesium fluoride films,” Appl. Opt. 35, 5091–5094 (1996).
[CrossRef] [PubMed]

S. M. Edlou, A. Smajkiewicz, G. A. Al-Jumaily, “Optical properties and environmental stability of oxide coatings deposited by reactive sputtering,” Appl. Opt. 32, 5601–5605 (1993).
[CrossRef] [PubMed]

A. Zöller, R. Götzelmann, K. Matl, D. Cushing, “Temperature-stable bandpass filters deposited with plasma ion-assisted deposition,” Appl. Opt. 35, 5609–5612 (1996).
[CrossRef] [PubMed]

N. K. Sahoo, A. P. Shapiro, “Process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite films evaporated from the solid solution,” Appl. Opt. 37, 698–718 (1998).
[CrossRef]

D. Reicher, K. Jungling, “Influence of crystal structure on the light scatter of zirconium oxide films,” Appl. Opt. 36, 1626–1637 (1997).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, J. A. Dobrowolski, “Influence of small inhomogeneities on the spectral characteristics of single thin films,” Appl. Opt. 36, 7188–7198 (1997).
[CrossRef]

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Appl. Opt. 21, 4020–4029 (1982).
[CrossRef] [PubMed]

B. Bovard, F. J. Van Milligen, M. J. Messerly, S. G. Saxe, H. A. Macleod, “Optical constants derivation for an inhomogeneous thin film from in situ transmission measurements,” Appl. Opt. 24, 1803–1807 (1985).
[CrossRef] [PubMed]

A. Duparré, S. Jakobs, “Combination of surface characterization techniques for investigating optical thin-film components,” Appl. Opt. 35, 5052–5058 (1996).
[CrossRef] [PubMed]

Appl. Phys. A (1)

N. K. Sahoo, K. V. S. R. Apparao, “Process-parameter optimization of Sb2O3 films in the ultraviolet and visible region for interferometric applications,” Appl. Phys. A 63, 195–202 (1996).

J. Am. Ceram. Soc. (2)

D. L. Porter, A. H. Heuer, “Microstructural development in MgO-stabilized zirconia (Mg-PSZ),” J. Am. Ceram. Soc. 62, 298–305 (1979).
[CrossRef]

P. Duwez, F. Odell, “Phase relationships in the system zirconia-ceria,” J. Am. Ceram. Soc. 33, 274–283 (1950).
[CrossRef]

J. Appl. Phys. (1)

P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the optical and structural properties of dielectric ZrO2 films by ion-assisted deposition,” J. Appl. Phys. 55, 235–241 (1984).
[CrossRef]

J. Mater. Sci. (1)

R. H. J. Hannink, “Growth morphology of the tetragonal phase in partially stabilized zirconia,” J. Mater. Sci. 13, 2487–2496 (1978).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci Technol. A (1)

E. E. Khawaja, F. Bouamrane, A. B. Hallak, M. A. Daous, M. A. Salim, “Observation of oxygen enrichment in zirconium oxide films,” J. Vac. Sci Technol. A 11, 580–587 (1993).
[CrossRef]

J. Vac. Sci. Technol. A (3)

C. M. Gilmore, C. Quinn, S. B. Qadri, C. R. Gosset, E. F. Skelton, “Stabilization of tetragonal ZrO2 with Al2O3 in reactive magnetron sputtered thin films,” J. Vac. Sci. Technol. A 5, 2085–2087 (1987).
[CrossRef]

F. Jones, “High-rate reactive sputter deposition of zirconium dioxide,” J. Vac. Sci. Technol. A 6, 3088–3097 (1988).
[CrossRef]

E. N. Farabaugh, D. M. Sanders, “Microstructure of dielectric thin films formed by e-beam coevaporation,” J. Vac. Sci. Technol. A 1, 356–359 (1983).
[CrossRef]

Opt. Eng. (2)

M. Cevro, G. Carter, “Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films,” Opt. Eng. 34, 596–606 (1995).
[CrossRef]

R.-Y. Tsai, M.-Y. Hua, F. C. Ho, “Influences of the deposition rate on the microstructure and hardness of composite films by reactive ion-assisted coevaporation,” Opt. Eng. 34, 3075–3082 (1995).
[CrossRef]

Thin Solid Films (4)

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The relationship between optical inhomogeneity and film structure,” Thin Solid Films 57, 173–178 (1979).
[CrossRef]

S. B. Qadri, E. F. Skelton, P. Lubitz, N. V. Nguyen, H. R. Khan, “Electron beam deposition of ZrO2-ZnO films,” Thin Solid Films 290–291, 80–83 (1996).

W.-C. Tsai, T.-Y. Tseng, “Characterization of yttria-stabilized zirconia thin films grown by planar magnetron sputtering,” Thin Solid Films 306, 86–91 (1997).
[CrossRef]

F. Biscarini, P. Samorí, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, J. L. Brédas, “Morphology and roughness of high-vacuum sublimed oligomer thin films,” Thin Solid Films 284–285, 439–443 (1996).

Z. Anorg. Allgem. Chem. (1)

O. Ruff, F. Ebert, “Ceramics of highly refractory materials,” Z. Anorg. Allgem. Chem. 180, 19–41 (1929).
[CrossRef]

Other (5)

D. Minkov, R. Swanepoel, “Computer drawing of the envelopes of spectra with interference,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 212–220 (1992).
[CrossRef]

H. K. Pulker, Coatings on Glass, 2nd ed. (Elsevier, New York, 1984), Chap. 8, pp. 351.

H. K. Pulker, K. H. Guenther, “Reactive physical vapor deposition processes,” in Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, New York, 1995), Chap. 4, pp. 91–115.

S. Ogura, “Dynamic characteristics in optically inhomogeneous films,” in Thin Films for Optical Systems, K. H. Guenther, ed., Proc. SPIE1782, 377–388 (1992).
[CrossRef]

D. M. Sanders, E. N. Farabaugh, W. K. Haller, “Glassy optical coatings by multisource evaporation,” in Thin Film Technologies and Special Applications, W. R. Hunter, ed., Proc. SPIE346, 31–38 (1982).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1

Transmittance and reflectance characteristics of the experimental films deposited at substrate temperature of 200 °C, rate of 0.4 nm s-1, and base value of oxygen pressure. Interference peaks in the lower end of the spectra have been considerably modulated because of structural nonlinear inhomogeneity.

Fig. 2
Fig. 2

Transmittance and reflectance characteristics of the experimental films deposited at substrate temperature of 162 °C, rate of 0.4 nm s-1, and oxygen pressure of 5 × 10-5 mbar. Interference peaks in the lower end of the spectra have also been considerably modulated because of structural nonlinear inhomogeneity at this process condition.

Fig. 3
Fig. 3

Transmittance and reflectance characteristics of the experimental films deposited at two extreme experimental substrate temperatures (ambient and 237 °C), rate of 0.4 nm s-1, and base pressure of oxygen. Dispersive behavior in interference peaks clearly indicates the absence of nonlinear inhomogeneity. On-line optical monitoring has indicated a fairly homogeneous growth at these conditions.

Fig. 4
Fig. 4

Experimental characteristics of an as-deposited film measured in air as well as in vacuum. Spectral characteristics have shown almost negligible transition between both the measurements.

Fig. 5
Fig. 5

Spectral variation of mean refractive index with respect to the substrate temperature. The rates and oxygen pressures were maintained at 0.4 nm s-1 and at base value, respectively.

Fig. 6
Fig. 6

Spectral variation of mean extinction coefficient with respect to the substrate temperature. The rates and oxygen pressures were maintained at 0.4 nm s-1 and at base value, respectively.

Fig. 7
Fig. 7

Spectral variation of mean refractive index with respect to the rate of deposition. The substrate temperatures and oxygen pressures were maintained at 162 °C and at 1 × 10-4 mbar, respectively.

Fig. 8
Fig. 8

Spectral variation of mean extinction coefficient with respect to the rate of deposition. The substrate temperatures and oxygen pressures were maintained at 162 °C and at 1 × 10-4 mbar, respectively.

Fig. 9
Fig. 9

Spectral variation of mean refractive index with respect to the oxygen pressure. The rates and substrate temperatures were maintained at 0.4 nm s-1 and at 162 °C, respectively.

Fig. 10
Fig. 10

Spectral variation of mean extinction coefficient with respect to the oxygen pressure. The rates and substrate temperatures were maintained at 0.4 nm s-1 and at 162 °C, respectively.

Fig. 11
Fig. 11

Surface topography of a composite film deposited at the optimum rate of deposition.

Fig. 12
Fig. 12

PSD’s and surface roughness of the films deposited at various substrate temperatures.

Fig. 13
Fig. 13

PSD’s and surface roughness of the films deposited at various rates of deposition.

Fig. 14
Fig. 14

PSD’s and surface roughness of the films deposited at various oxygen pressures.

Fig. 15
Fig. 15

BR plots for the films deposited at various oxygen pressures.

Fig. 16
Fig. 16

X-ray diffraction peaks of the films deposited at higher deposition rate and optimum oxygen pressure.

Fig. 17
Fig. 17

X-ray diffraction analysis of the films deposited at various substrate temperatures.

Fig. 18
Fig. 18

Typical EDX analysis spectrum of a film deposited at a substrate temperature of 188 °C, a rate of 0.4 nm s-1, and without any additional oxygen.

Fig. 19
Fig. 19

EDX analyses of the films, showing oxygen-pressure-dependent composition and mean-refractive-index values.

Fig. 20
Fig. 20

EDX analyses of the films, showing rate-dependent composition and mean refractive-index values.

Fig. 21
Fig. 21

EDX analyses of the films, showing substrate temperature-dependent composition and mean refractive-index values.

Fig. 22
Fig. 22

Experimental spectral characteristic of a metal–dielectric filter with Ag and the ternary composite.

Fig. 23
Fig. 23

Experimental spectral characteristic of a metal–dielectric filter with Ag and the ternary composite.

Tables (2)

Tables Icon

Table 1 Cauchy Coefficients for the Films Deposited at the Same Rate of Deposition (0.4 nm s-1), Without Any Additional Oxygen, at Various Substrate Temperatures

Tables Icon

Table 2 Logistic Coefficients for the Films Deposited at the Same Rate of Deposition (0.4 nm s-1), Without Any Additional Oxygen, at Various Substrate Temperatures

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 nz d m ,     m = 1 ,   2 ,   3 , ,
δ R λ = - 4 π n λ n s   T λ 0 z a Im r λ cos 2 π nz λ + i   n s n sin 2 π nz λ 2 ñ z d z ,
δ T λ = - δ R λ + 4 π n λ n s   T λ 0 z a cos 2 π nz λ + i   n s n sin 2 π nz λ 2 Im ñ z d z ,
n m λ = a 1 + a 2 λ 2 + a 3 λ 3 + a 4 λ 4 ,
k m λ = a / 1 + λ / c b d .
P k = 1 L   d x   exp i 2 π kx Z x 2
Substrate   72.48 T   15.77 M   132.33 T   15.55 M   432.48 T   14.66 M   134.12 T   23.93 M   727.71 T   13.03 M   78.77 T   Air ,

Metrics