Abstract

We have studied a laser system with quick electronic tuning of the spectrum shape and continuous distribution. The proposed method is based on separate control of phase and amplitude spatial distributions of resonator transmittance. Evolution of the spectral function of the diffractively coupled dispersive resonators and the model for the formation of the resonator with the spectral function given by its moments are studied theoretically. The synthesis of continuous spectra is investigated experimentally in the laser with a novel control element including a spatial acousto-optic modulator and a tunable lens telescope.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Kravchenko, Yu. N. Parkhomenko, “Electronic tuning lasers on condensed media.” Izv. Akad. Nauk SSSR Ser. Fiz. 54, 1543–1551 (1990), in Russian.
  2. K. O. Nvairo, I. H. White, C. J. Armistead, P. A. Kirkby, “Multiple channel signal generation using multichannel grating cavity laser with crosstalk compensation,” Electron. Lett. 28, 261–263 (1992).
    [CrossRef]
  3. J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications,” Electron. Lett. 28, 1806–1807 (1992).
    [CrossRef]
  4. I. H. White, “A multichannel grating cavity laser for wavelength division multiplexing applications,” IEEE J. Lightwave Technol. 9, 893–899 (1991).
    [CrossRef]
  5. M. Alden, K. Fredricksson, S. Wallin, “Application of a two-color dye laser in CARS experiments for fast determination of temperatures,” Appl. Opt. 23, 2053–2055 (1984).
    [CrossRef] [PubMed]
  6. M. Namazian, R. L. Schmitt, M. B. Long, “Two-wavelength single laser CH and CH4 imaging in a lifted turbulent diffusion flame,” Appl. Opt. 27, 3597–3600 (1988).
    [CrossRef] [PubMed]
  7. A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O using 2-wavelength eximer laser,” Appl. Phys. B 51, 99–102 (1992).
    [CrossRef]
  8. D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
    [CrossRef] [PubMed]
  9. N. N. Nenchev, M. M. Martin, Y. A. Meyer, “Alternative wavelength DIAL dye laser using a reflecting interference wedge,” Appl. Opt. 24, 1957–1959 (1985).
    [CrossRef] [PubMed]
  10. H. V. Pitingsrud, “CO laser for lidar applications, producing two narrowly spaced independently wavelength-selectable Q-switched output pulses,” Appl. Opt. 30, 3952–3963 (1991).
    [CrossRef]
  11. H. Takeda, Y. Akabane, F. Kannari, “Dual-wavelength operation of a flashlamp pumped narrow-linewidth Ti:sapphire laser,” Jpn. J. Appl. Phys. 33, 6557–5663 (1994).
    [CrossRef]
  12. V. I. Kravchenko, A. I. Lyushchenko, Yu. N. Parkhomenko, “The competition of spectral components of a tunable laser accompanying the biharmonic excitation of an acoustooptic deflector,” Sov. J. Quantum Electron. 22, 40–43 (1992).
    [CrossRef]
  13. O. N. Galkin, Yu. S. Plaksij, Yu. N. Parkhomenko, “Formation of a multifrequency spectrum of a tunable laser by excitation of spatially modulated gratings in acoustooptic deflector,” Quantum Electron. 25, 127–129 (1995).
    [CrossRef]
  14. O. N. Galkin, V. I. Kravchenko, A. I. Liushenko, Yu. N. Parkhomenko, “Light diffraction from multifrequency volume gratings in anisotropic media,” Int. J. Nonlinear Opt. Phys. 3, 55–68 (1994).
    [CrossRef]
  15. V. I. Kravchenko, Yu. N. Parkhomenko, “A calculation of the selectivity of resonators with the angular dispersion,” Quantum Electron. 12, 1220–1226 (1985), in Russian.
  16. V. I. Voronzov, V. I. Kravchenko, Yu. D. Opanasyuk, Yu. N. Parkhomenko, “Selective properties of a linear resonator with a nonsymmetrical dispersive element,” Quantum Electron. 9, 1586–1591 (1982), in Russian.
  17. V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “The selectivity of dispersive resonators with arbitrary placed focusing and bounding elements,” Quantum Electron. 13, 2038–2043 (1986), in Russian.
  18. V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “Selectivity of a dispersive resonator with a nonuniform aperture,” Sov. J. Quantum Electron. 18, 54–57 (1988).
    [CrossRef]
  19. V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “The selectivity of coupled dispersive resonators,” Sov. J. Quantum Electron. 18, 1135–1139 (1988).
    [CrossRef]
  20. H. Cramer, Mathematical Methods of Statistics (Mir, Moskow, 1975), in Russian.
  21. T. Yano, M. Kawabushi, A. Fukumoto, A. Watanabe, “Anisotropic light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–694 (1975).
    [CrossRef]
  22. M. F. Stelmah, V. G. Dmitriev, L. K. Mihajlov, S. L. Seregin, E. M. Spizin, O. B. Cherednichenko, “Tunable lasers and laser spectral devices with the use of acoustooptic filters,” J. Appl. Spectrosc. 40, 181–189 (1984), in Russian.
  23. V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “Effect of a dynamic lens on the spectral characteristics of a pulse organic dye laser with the dispersion cavity,” Opt. Spectrosc. 67, 550–554 (1989).

1995 (1)

O. N. Galkin, Yu. S. Plaksij, Yu. N. Parkhomenko, “Formation of a multifrequency spectrum of a tunable laser by excitation of spatially modulated gratings in acoustooptic deflector,” Quantum Electron. 25, 127–129 (1995).
[CrossRef]

1994 (2)

O. N. Galkin, V. I. Kravchenko, A. I. Liushenko, Yu. N. Parkhomenko, “Light diffraction from multifrequency volume gratings in anisotropic media,” Int. J. Nonlinear Opt. Phys. 3, 55–68 (1994).
[CrossRef]

H. Takeda, Y. Akabane, F. Kannari, “Dual-wavelength operation of a flashlamp pumped narrow-linewidth Ti:sapphire laser,” Jpn. J. Appl. Phys. 33, 6557–5663 (1994).
[CrossRef]

1992 (4)

V. I. Kravchenko, A. I. Lyushchenko, Yu. N. Parkhomenko, “The competition of spectral components of a tunable laser accompanying the biharmonic excitation of an acoustooptic deflector,” Sov. J. Quantum Electron. 22, 40–43 (1992).
[CrossRef]

K. O. Nvairo, I. H. White, C. J. Armistead, P. A. Kirkby, “Multiple channel signal generation using multichannel grating cavity laser with crosstalk compensation,” Electron. Lett. 28, 261–263 (1992).
[CrossRef]

J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications,” Electron. Lett. 28, 1806–1807 (1992).
[CrossRef]

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O using 2-wavelength eximer laser,” Appl. Phys. B 51, 99–102 (1992).
[CrossRef]

1991 (3)

1990 (1)

V. I. Kravchenko, Yu. N. Parkhomenko, “Electronic tuning lasers on condensed media.” Izv. Akad. Nauk SSSR Ser. Fiz. 54, 1543–1551 (1990), in Russian.

1989 (1)

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “Effect of a dynamic lens on the spectral characteristics of a pulse organic dye laser with the dispersion cavity,” Opt. Spectrosc. 67, 550–554 (1989).

1988 (3)

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “Selectivity of a dispersive resonator with a nonuniform aperture,” Sov. J. Quantum Electron. 18, 54–57 (1988).
[CrossRef]

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “The selectivity of coupled dispersive resonators,” Sov. J. Quantum Electron. 18, 1135–1139 (1988).
[CrossRef]

M. Namazian, R. L. Schmitt, M. B. Long, “Two-wavelength single laser CH and CH4 imaging in a lifted turbulent diffusion flame,” Appl. Opt. 27, 3597–3600 (1988).
[CrossRef] [PubMed]

1986 (1)

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “The selectivity of dispersive resonators with arbitrary placed focusing and bounding elements,” Quantum Electron. 13, 2038–2043 (1986), in Russian.

1985 (2)

N. N. Nenchev, M. M. Martin, Y. A. Meyer, “Alternative wavelength DIAL dye laser using a reflecting interference wedge,” Appl. Opt. 24, 1957–1959 (1985).
[CrossRef] [PubMed]

V. I. Kravchenko, Yu. N. Parkhomenko, “A calculation of the selectivity of resonators with the angular dispersion,” Quantum Electron. 12, 1220–1226 (1985), in Russian.

1984 (2)

M. F. Stelmah, V. G. Dmitriev, L. K. Mihajlov, S. L. Seregin, E. M. Spizin, O. B. Cherednichenko, “Tunable lasers and laser spectral devices with the use of acoustooptic filters,” J. Appl. Spectrosc. 40, 181–189 (1984), in Russian.

M. Alden, K. Fredricksson, S. Wallin, “Application of a two-color dye laser in CARS experiments for fast determination of temperatures,” Appl. Opt. 23, 2053–2055 (1984).
[CrossRef] [PubMed]

1982 (1)

V. I. Voronzov, V. I. Kravchenko, Yu. D. Opanasyuk, Yu. N. Parkhomenko, “Selective properties of a linear resonator with a nonsymmetrical dispersive element,” Quantum Electron. 9, 1586–1591 (1982), in Russian.

1975 (1)

T. Yano, M. Kawabushi, A. Fukumoto, A. Watanabe, “Anisotropic light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–694 (1975).
[CrossRef]

Akabane, Y.

H. Takeda, Y. Akabane, F. Kannari, “Dual-wavelength operation of a flashlamp pumped narrow-linewidth Ti:sapphire laser,” Jpn. J. Appl. Phys. 33, 6557–5663 (1994).
[CrossRef]

Alden, M.

Armistead, C. J.

K. O. Nvairo, I. H. White, C. J. Armistead, P. A. Kirkby, “Multiple channel signal generation using multichannel grating cavity laser with crosstalk compensation,” Electron. Lett. 28, 261–263 (1992).
[CrossRef]

Arnold, A.

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O using 2-wavelength eximer laser,” Appl. Phys. B 51, 99–102 (1992).
[CrossRef]

Becker, H.

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O using 2-wavelength eximer laser,” Appl. Phys. B 51, 99–102 (1992).
[CrossRef]

Bhat, R.

J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications,” Electron. Lett. 28, 1806–1807 (1992).
[CrossRef]

Bruneau, D.

Caneau, C.

J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications,” Electron. Lett. 28, 1806–1807 (1992).
[CrossRef]

Cazeneuve, H.

Chang-Hasnain, C.

J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications,” Electron. Lett. 28, 1806–1807 (1992).
[CrossRef]

Cherednichenko, O. B.

M. F. Stelmah, V. G. Dmitriev, L. K. Mihajlov, S. L. Seregin, E. M. Spizin, O. B. Cherednichenko, “Tunable lasers and laser spectral devices with the use of acoustooptic filters,” J. Appl. Spectrosc. 40, 181–189 (1984), in Russian.

Cramer, H.

H. Cramer, Mathematical Methods of Statistics (Mir, Moskow, 1975), in Russian.

Dmitriev, V. G.

M. F. Stelmah, V. G. Dmitriev, L. K. Mihajlov, S. L. Seregin, E. M. Spizin, O. B. Cherednichenko, “Tunable lasers and laser spectral devices with the use of acoustooptic filters,” J. Appl. Spectrosc. 40, 181–189 (1984), in Russian.

Fredricksson, K.

Fukumoto, A.

T. Yano, M. Kawabushi, A. Fukumoto, A. Watanabe, “Anisotropic light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–694 (1975).
[CrossRef]

Galkin, O. N.

O. N. Galkin, Yu. S. Plaksij, Yu. N. Parkhomenko, “Formation of a multifrequency spectrum of a tunable laser by excitation of spatially modulated gratings in acoustooptic deflector,” Quantum Electron. 25, 127–129 (1995).
[CrossRef]

O. N. Galkin, V. I. Kravchenko, A. I. Liushenko, Yu. N. Parkhomenko, “Light diffraction from multifrequency volume gratings in anisotropic media,” Int. J. Nonlinear Opt. Phys. 3, 55–68 (1994).
[CrossRef]

Hayes, J. R.

J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications,” Electron. Lett. 28, 1806–1807 (1992).
[CrossRef]

Kannari, F.

H. Takeda, Y. Akabane, F. Kannari, “Dual-wavelength operation of a flashlamp pumped narrow-linewidth Ti:sapphire laser,” Jpn. J. Appl. Phys. 33, 6557–5663 (1994).
[CrossRef]

Kawabushi, M.

T. Yano, M. Kawabushi, A. Fukumoto, A. Watanabe, “Anisotropic light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–694 (1975).
[CrossRef]

Ketterle, W.

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O using 2-wavelength eximer laser,” Appl. Phys. B 51, 99–102 (1992).
[CrossRef]

Kirkby, P. A.

K. O. Nvairo, I. H. White, C. J. Armistead, P. A. Kirkby, “Multiple channel signal generation using multichannel grating cavity laser with crosstalk compensation,” Electron. Lett. 28, 261–263 (1992).
[CrossRef]

Koza, M. A.

J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications,” Electron. Lett. 28, 1806–1807 (1992).
[CrossRef]

Kravchenko, V. I.

O. N. Galkin, V. I. Kravchenko, A. I. Liushenko, Yu. N. Parkhomenko, “Light diffraction from multifrequency volume gratings in anisotropic media,” Int. J. Nonlinear Opt. Phys. 3, 55–68 (1994).
[CrossRef]

V. I. Kravchenko, A. I. Lyushchenko, Yu. N. Parkhomenko, “The competition of spectral components of a tunable laser accompanying the biharmonic excitation of an acoustooptic deflector,” Sov. J. Quantum Electron. 22, 40–43 (1992).
[CrossRef]

V. I. Kravchenko, Yu. N. Parkhomenko, “Electronic tuning lasers on condensed media.” Izv. Akad. Nauk SSSR Ser. Fiz. 54, 1543–1551 (1990), in Russian.

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “Effect of a dynamic lens on the spectral characteristics of a pulse organic dye laser with the dispersion cavity,” Opt. Spectrosc. 67, 550–554 (1989).

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “The selectivity of coupled dispersive resonators,” Sov. J. Quantum Electron. 18, 1135–1139 (1988).
[CrossRef]

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “Selectivity of a dispersive resonator with a nonuniform aperture,” Sov. J. Quantum Electron. 18, 54–57 (1988).
[CrossRef]

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “The selectivity of dispersive resonators with arbitrary placed focusing and bounding elements,” Quantum Electron. 13, 2038–2043 (1986), in Russian.

V. I. Kravchenko, Yu. N. Parkhomenko, “A calculation of the selectivity of resonators with the angular dispersion,” Quantum Electron. 12, 1220–1226 (1985), in Russian.

V. I. Voronzov, V. I. Kravchenko, Yu. D. Opanasyuk, Yu. N. Parkhomenko, “Selective properties of a linear resonator with a nonsymmetrical dispersive element,” Quantum Electron. 9, 1586–1591 (1982), in Russian.

LeBlanc, H. P.

J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications,” Electron. Lett. 28, 1806–1807 (1992).
[CrossRef]

Liushenko, A. I.

O. N. Galkin, V. I. Kravchenko, A. I. Liushenko, Yu. N. Parkhomenko, “Light diffraction from multifrequency volume gratings in anisotropic media,” Int. J. Nonlinear Opt. Phys. 3, 55–68 (1994).
[CrossRef]

Long, M. B.

Loth, C.

Lyushchenko, A. I.

V. I. Kravchenko, A. I. Lyushchenko, Yu. N. Parkhomenko, “The competition of spectral components of a tunable laser accompanying the biharmonic excitation of an acoustooptic deflector,” Sov. J. Quantum Electron. 22, 40–43 (1992).
[CrossRef]

Martin, M. M.

Meyer, Y. A.

Mihajlov, L. K.

M. F. Stelmah, V. G. Dmitriev, L. K. Mihajlov, S. L. Seregin, E. M. Spizin, O. B. Cherednichenko, “Tunable lasers and laser spectral devices with the use of acoustooptic filters,” J. Appl. Spectrosc. 40, 181–189 (1984), in Russian.

Namazian, M.

Nenchev, N. N.

Nvairo, K. O.

K. O. Nvairo, I. H. White, C. J. Armistead, P. A. Kirkby, “Multiple channel signal generation using multichannel grating cavity laser with crosstalk compensation,” Electron. Lett. 28, 261–263 (1992).
[CrossRef]

Opanasyuk, Yu. D.

V. I. Voronzov, V. I. Kravchenko, Yu. D. Opanasyuk, Yu. N. Parkhomenko, “Selective properties of a linear resonator with a nonsymmetrical dispersive element,” Quantum Electron. 9, 1586–1591 (1982), in Russian.

Parkhomenko, Yu. N.

O. N. Galkin, Yu. S. Plaksij, Yu. N. Parkhomenko, “Formation of a multifrequency spectrum of a tunable laser by excitation of spatially modulated gratings in acoustooptic deflector,” Quantum Electron. 25, 127–129 (1995).
[CrossRef]

O. N. Galkin, V. I. Kravchenko, A. I. Liushenko, Yu. N. Parkhomenko, “Light diffraction from multifrequency volume gratings in anisotropic media,” Int. J. Nonlinear Opt. Phys. 3, 55–68 (1994).
[CrossRef]

V. I. Kravchenko, A. I. Lyushchenko, Yu. N. Parkhomenko, “The competition of spectral components of a tunable laser accompanying the biharmonic excitation of an acoustooptic deflector,” Sov. J. Quantum Electron. 22, 40–43 (1992).
[CrossRef]

V. I. Kravchenko, Yu. N. Parkhomenko, “Electronic tuning lasers on condensed media.” Izv. Akad. Nauk SSSR Ser. Fiz. 54, 1543–1551 (1990), in Russian.

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “Effect of a dynamic lens on the spectral characteristics of a pulse organic dye laser with the dispersion cavity,” Opt. Spectrosc. 67, 550–554 (1989).

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “The selectivity of coupled dispersive resonators,” Sov. J. Quantum Electron. 18, 1135–1139 (1988).
[CrossRef]

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “Selectivity of a dispersive resonator with a nonuniform aperture,” Sov. J. Quantum Electron. 18, 54–57 (1988).
[CrossRef]

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “The selectivity of dispersive resonators with arbitrary placed focusing and bounding elements,” Quantum Electron. 13, 2038–2043 (1986), in Russian.

V. I. Kravchenko, Yu. N. Parkhomenko, “A calculation of the selectivity of resonators with the angular dispersion,” Quantum Electron. 12, 1220–1226 (1985), in Russian.

V. I. Voronzov, V. I. Kravchenko, Yu. D. Opanasyuk, Yu. N. Parkhomenko, “Selective properties of a linear resonator with a nonsymmetrical dispersive element,” Quantum Electron. 9, 1586–1591 (1982), in Russian.

Pelon, J.

Pitingsrud, H. V.

Plaksij, Yu. S.

O. N. Galkin, Yu. S. Plaksij, Yu. N. Parkhomenko, “Formation of a multifrequency spectrum of a tunable laser by excitation of spatially modulated gratings in acoustooptic deflector,” Quantum Electron. 25, 127–129 (1995).
[CrossRef]

Poguntke, K.

J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications,” Electron. Lett. 28, 1806–1807 (1992).
[CrossRef]

Scherer, A.

J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications,” Electron. Lett. 28, 1806–1807 (1992).
[CrossRef]

Schmitt, R. L.

Seregin, S. L.

M. F. Stelmah, V. G. Dmitriev, L. K. Mihajlov, S. L. Seregin, E. M. Spizin, O. B. Cherednichenko, “Tunable lasers and laser spectral devices with the use of acoustooptic filters,” J. Appl. Spectrosc. 40, 181–189 (1984), in Russian.

Sokolov, V. A.

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “Effect of a dynamic lens on the spectral characteristics of a pulse organic dye laser with the dispersion cavity,” Opt. Spectrosc. 67, 550–554 (1989).

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “The selectivity of coupled dispersive resonators,” Sov. J. Quantum Electron. 18, 1135–1139 (1988).
[CrossRef]

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “Selectivity of a dispersive resonator with a nonuniform aperture,” Sov. J. Quantum Electron. 18, 54–57 (1988).
[CrossRef]

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “The selectivity of dispersive resonators with arbitrary placed focusing and bounding elements,” Quantum Electron. 13, 2038–2043 (1986), in Russian.

Soole, J. B. D.

J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications,” Electron. Lett. 28, 1806–1807 (1992).
[CrossRef]

Spizin, E. M.

M. F. Stelmah, V. G. Dmitriev, L. K. Mihajlov, S. L. Seregin, E. M. Spizin, O. B. Cherednichenko, “Tunable lasers and laser spectral devices with the use of acoustooptic filters,” J. Appl. Spectrosc. 40, 181–189 (1984), in Russian.

Stelmah, M. F.

M. F. Stelmah, V. G. Dmitriev, L. K. Mihajlov, S. L. Seregin, E. M. Spizin, O. B. Cherednichenko, “Tunable lasers and laser spectral devices with the use of acoustooptic filters,” J. Appl. Spectrosc. 40, 181–189 (1984), in Russian.

Takeda, H.

H. Takeda, Y. Akabane, F. Kannari, “Dual-wavelength operation of a flashlamp pumped narrow-linewidth Ti:sapphire laser,” Jpn. J. Appl. Phys. 33, 6557–5663 (1994).
[CrossRef]

Voronzov, V. I.

V. I. Voronzov, V. I. Kravchenko, Yu. D. Opanasyuk, Yu. N. Parkhomenko, “Selective properties of a linear resonator with a nonsymmetrical dispersive element,” Quantum Electron. 9, 1586–1591 (1982), in Russian.

Wallin, S.

Watanabe, A.

T. Yano, M. Kawabushi, A. Fukumoto, A. Watanabe, “Anisotropic light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–694 (1975).
[CrossRef]

White, I. H.

K. O. Nvairo, I. H. White, C. J. Armistead, P. A. Kirkby, “Multiple channel signal generation using multichannel grating cavity laser with crosstalk compensation,” Electron. Lett. 28, 261–263 (1992).
[CrossRef]

I. H. White, “A multichannel grating cavity laser for wavelength division multiplexing applications,” IEEE J. Lightwave Technol. 9, 893–899 (1991).
[CrossRef]

Wolfrum, J.

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O using 2-wavelength eximer laser,” Appl. Phys. B 51, 99–102 (1992).
[CrossRef]

Yano, T.

T. Yano, M. Kawabushi, A. Fukumoto, A. Watanabe, “Anisotropic light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–694 (1975).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (1)

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O using 2-wavelength eximer laser,” Appl. Phys. B 51, 99–102 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

T. Yano, M. Kawabushi, A. Fukumoto, A. Watanabe, “Anisotropic light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–694 (1975).
[CrossRef]

Electron. Lett. (2)

K. O. Nvairo, I. H. White, C. J. Armistead, P. A. Kirkby, “Multiple channel signal generation using multichannel grating cavity laser with crosstalk compensation,” Electron. Lett. 28, 261–263 (1992).
[CrossRef]

J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications,” Electron. Lett. 28, 1806–1807 (1992).
[CrossRef]

IEEE J. Lightwave Technol. (1)

I. H. White, “A multichannel grating cavity laser for wavelength division multiplexing applications,” IEEE J. Lightwave Technol. 9, 893–899 (1991).
[CrossRef]

Int. J. Nonlinear Opt. Phys. (1)

O. N. Galkin, V. I. Kravchenko, A. I. Liushenko, Yu. N. Parkhomenko, “Light diffraction from multifrequency volume gratings in anisotropic media,” Int. J. Nonlinear Opt. Phys. 3, 55–68 (1994).
[CrossRef]

Izv. Akad. Nauk SSSR Ser. Fiz. (1)

V. I. Kravchenko, Yu. N. Parkhomenko, “Electronic tuning lasers on condensed media.” Izv. Akad. Nauk SSSR Ser. Fiz. 54, 1543–1551 (1990), in Russian.

J. Appl. Spectrosc. (1)

M. F. Stelmah, V. G. Dmitriev, L. K. Mihajlov, S. L. Seregin, E. M. Spizin, O. B. Cherednichenko, “Tunable lasers and laser spectral devices with the use of acoustooptic filters,” J. Appl. Spectrosc. 40, 181–189 (1984), in Russian.

Jpn. J. Appl. Phys. (1)

H. Takeda, Y. Akabane, F. Kannari, “Dual-wavelength operation of a flashlamp pumped narrow-linewidth Ti:sapphire laser,” Jpn. J. Appl. Phys. 33, 6557–5663 (1994).
[CrossRef]

Opt. Spectrosc. (1)

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “Effect of a dynamic lens on the spectral characteristics of a pulse organic dye laser with the dispersion cavity,” Opt. Spectrosc. 67, 550–554 (1989).

Quantum Electron. (4)

O. N. Galkin, Yu. S. Plaksij, Yu. N. Parkhomenko, “Formation of a multifrequency spectrum of a tunable laser by excitation of spatially modulated gratings in acoustooptic deflector,” Quantum Electron. 25, 127–129 (1995).
[CrossRef]

V. I. Kravchenko, Yu. N. Parkhomenko, “A calculation of the selectivity of resonators with the angular dispersion,” Quantum Electron. 12, 1220–1226 (1985), in Russian.

V. I. Voronzov, V. I. Kravchenko, Yu. D. Opanasyuk, Yu. N. Parkhomenko, “Selective properties of a linear resonator with a nonsymmetrical dispersive element,” Quantum Electron. 9, 1586–1591 (1982), in Russian.

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “The selectivity of dispersive resonators with arbitrary placed focusing and bounding elements,” Quantum Electron. 13, 2038–2043 (1986), in Russian.

Sov. J. Quantum Electron. (3)

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “Selectivity of a dispersive resonator with a nonuniform aperture,” Sov. J. Quantum Electron. 18, 54–57 (1988).
[CrossRef]

V. I. Kravchenko, Yu. N. Parkhomenko, V. A. Sokolov, “The selectivity of coupled dispersive resonators,” Sov. J. Quantum Electron. 18, 1135–1139 (1988).
[CrossRef]

V. I. Kravchenko, A. I. Lyushchenko, Yu. N. Parkhomenko, “The competition of spectral components of a tunable laser accompanying the biharmonic excitation of an acoustooptic deflector,” Sov. J. Quantum Electron. 22, 40–43 (1992).
[CrossRef]

Other (1)

H. Cramer, Mathematical Methods of Statistics (Mir, Moskow, 1975), in Russian.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Experimental setup of the laser with a tunable shape of a continuous spectrum: 1, grating; 2, control element; 3, acousto-optic spatial modulator; 4, lens telescope; 5, prism expander; 6, cell with dye solution; 7, mirror; 8, spectrograph with a CCD array photodetector; 9, microwave generator; 10, interface; 11, computer. (b) A model of two diffractively coupled dispersive resonators.

Fig. 2
Fig. 2

Calculated spectral function of coupled dispersive resonators: (a) dependence of its shape on the aperture parameter β for a fixed resonator configuration; (b) dependence of its shape on the resonator configuration Re g for fixed β; (c) dependence of its shape on the resonator configuration Re g that illustrates the increase of the coupling resonators.

Fig. 4
Fig. 4

Influence of the partial diaphragm parameters on the spectral function of the dispersive resonator calculated with the set of equations (10a), (11), and (12) from the given moments in the nonsimilarity region: dashed curve, needed function; solid curve, calculated.

Fig. 5
Fig. 5

(a) Experimental dependence of a laser spectrum on telescope detuning Δ and (b) that of the laser spectrum width on the intracavity diaphragm size (the sound wave pulse duration).

Fig. 6
Fig. 6

Relation between (a) sound wave and (b) laser spectra shapes for experiments that illustrate the spectrum asymmetry control (modulation with discrete pulses).

Fig. 7
Fig. 7

Relation between (a) sound wave and (b) laser spectra shapes for experiments that illustrate the spectrum asymmetry control (the modulation with continuous signal).

Fig. 8
Fig. 8

Relation between (a) sound wave and (b) laser spectra shapes for experiments that illustrate the spectrum excess control.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Λ k u ξ = - +   K ξ ,   ξ 1 N ξ 1 P ξ 1 W ξ 1 ,   k u ξ 1 d ξ 1 ,
K ξ ,   ξ 1 = Γ 2 π i exp - i ξ ξ 1 + ig ξ 2 + ξ 1 2 / 2 ,
N ξ ,   k = t j   exp - i γ j ξ ,   ξ α - β j ,   α + β j , j = 1 ,   2 ,
F Δ k = | Λ 0 | 2   exp Im s 2 h - 1 ,
δ = Δ k k M = 2 a π D ϕ Im g - 1 h * - 1 Im L e h * - 1 .
δ = a   2 C π D ϕ D .
F k = i   a i F i k - Δ k i ,
δ i = Δ k i k 0 = k π D ϕ x Δ f 2 2 ,
σ = k π D ϕ 1 k 2 w 2 + w Δ f 2 2 2 1 / 2 .
y = 2 δ σ 2 = 2 x Δ f 2 2 1 k 2 w 2 + Δ w f 2 2 2 ,
m 1 =   λ I λ d λ ,
M k =   λ - m 1 k I λ d λ ,
m 2 r = 1 z r j = 0 r 2 r - j - 1 ! ! C 2 r 2 j y j b 2 j ,
m 2 r + 1 = 1 z 2 r + 1 / 2 j = 0 r 2 r - j - 1 ! ! C 2 r + 1 2 j + 1 y 2 j + 1 / 2 b 2 j + 1 ,
b 2 k = 2 π σ   i = 1 m   i 2 k a - i + a i , b 2 k + 1 = 2 π σ   i = 1 m   i 2 k + 1 a - i - a i .
1 / 2 k - 1 ! ! b 2 k y k = i = 0 k - 1 k - i C k i μ 2 i z i ,
b 2 n + 2 = k = 1 n   D k b 2 k
i = 0 n + 1   z i μ 2 i j = max 1 , i n + 1 - 1 k - i 2 j - 1 ! ! 2 m + 1 - 1 ! ! × C j i D j y n + 1 - j = 0 ,
M 2 = σ 2 Δ z Δ 2

Metrics