Abstract

Cyclic olefin polymer (COP) is newly used as the inner dielectric of infrared, hollow glass waveguides because of its low extinction coefficient in the mid-infrared region. A liquid-flow coating and dry-cure process are employed to form the COP layer on the inside of a silver-coated hollow glass tube. In the coating process, cyclohexane is chosen as the solvent of COP to form a smooth and uniform COP layer. It is shown that COP-coated silver hollow glass waveguides show low loss properties for CO2, CO, and Er:YAG laser light when the thickness of the COP layer is properly chosen.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium coated nickel hollow waveguide for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
    [CrossRef]
  2. M. B. Levy, K. D. Laakman, “Flexible waveguides for CO2 laser surgery,” in Optical and Laser Technology in Medicine, R. J. Landry, D. Sliney, R. Scott, eds., Proc. SPIE605, 57–58 (1986).
    [CrossRef]
  3. A. Hongo, K. Morosawa, K. Masumoto, T. Shiota, T. Hashimoto, “Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31, 5114–5120 (1992).
    [CrossRef] [PubMed]
  4. C. E. Morrow, G. Gu, “Fiberlase TM: a monolithic hollow waveguide,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich eds., Proc. SPIE2131, 18–27 (1994).
    [CrossRef]
  5. I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
    [CrossRef] [PubMed]
  6. Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristic of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
    [CrossRef]
  7. R. K. Nubling, J. A. Harrington, “Hollow waveguide delivery system for high-power, industrial CO2 lasers,” Appl. Opt. 35, 372–380 (1996).
    [CrossRef] [PubMed]
  8. Y. Wang, A. Hongo, Y. Kato, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
    [CrossRef] [PubMed]
  9. M. Matsuo, “Recent development of cyclic olefin polymers: polymers derived from Dicyclopentadience (DCPD),” High Polym. 45, 652–656 (1996), in Japanese.
  10. Y. Wang, M. Miyagi, “Simultaneous measurement of optical constants of dispersive material at visible and infrared wavelengths,” Appl. Opt. 36, 877–884 (1997).
    [CrossRef] [PubMed]
  11. M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coatings in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
    [CrossRef]
  12. Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 4–10 (1994).
    [CrossRef]
  13. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
    [CrossRef] [PubMed]
  14. A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
    [CrossRef]

1997 (2)

1996 (2)

R. K. Nubling, J. A. Harrington, “Hollow waveguide delivery system for high-power, industrial CO2 lasers,” Appl. Opt. 35, 372–380 (1996).
[CrossRef] [PubMed]

M. Matsuo, “Recent development of cyclic olefin polymers: polymers derived from Dicyclopentadience (DCPD),” High Polym. 45, 652–656 (1996), in Japanese.

1995 (3)

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coatings in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristic of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

1993 (1)

1992 (1)

1983 (1)

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium coated nickel hollow waveguide for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Abe, S.

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristic of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 4–10 (1994).
[CrossRef]

Aizawa, M.

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristic of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 4–10 (1994).
[CrossRef]

Aizawa, Y.

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium coated nickel hollow waveguide for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Croitoru, N.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Dror, J.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Ertl, T.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Gannot, I.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Gojo, T.

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coatings in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

Gu, G.

C. E. Morrow, G. Gu, “Fiberlase TM: a monolithic hollow waveguide,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich eds., Proc. SPIE2131, 18–27 (1994).
[CrossRef]

Harrington, J. A.

Hashimoto, T.

Hongo, A.

Y. Wang, A. Hongo, Y. Kato, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
[CrossRef] [PubMed]

A. Hongo, K. Morosawa, K. Masumoto, T. Shiota, T. Hashimoto, “Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31, 5114–5120 (1992).
[CrossRef] [PubMed]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium coated nickel hollow waveguide for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Inberg, A.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Kato, Y.

Y. Wang, A. Hongo, Y. Kato, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
[CrossRef] [PubMed]

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coatings in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristic of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 4–10 (1994).
[CrossRef]

Kawakami, S.

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium coated nickel hollow waveguide for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Kubota, S.

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Laakman, K. D.

M. B. Levy, K. D. Laakman, “Flexible waveguides for CO2 laser surgery,” in Optical and Laser Technology in Medicine, R. J. Landry, D. Sliney, R. Scott, eds., Proc. SPIE605, 57–58 (1986).
[CrossRef]

Levy, M. B.

M. B. Levy, K. D. Laakman, “Flexible waveguides for CO2 laser surgery,” in Optical and Laser Technology in Medicine, R. J. Landry, D. Sliney, R. Scott, eds., Proc. SPIE605, 57–58 (1986).
[CrossRef]

Masumoto, K.

Matsuo, M.

M. Matsuo, “Recent development of cyclic olefin polymers: polymers derived from Dicyclopentadience (DCPD),” High Polym. 45, 652–656 (1996), in Japanese.

Matsuura, Y.

Miura, D.

Miyagi, M.

Y. Wang, A. Hongo, Y. Kato, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
[CrossRef] [PubMed]

Y. Wang, M. Miyagi, “Simultaneous measurement of optical constants of dispersive material at visible and infrared wavelengths,” Appl. Opt. 36, 877–884 (1997).
[CrossRef] [PubMed]

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristic of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coatings in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[CrossRef] [PubMed]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium coated nickel hollow waveguide for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 4–10 (1994).
[CrossRef]

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Morosawa, K.

Morrow, C. E.

C. E. Morrow, G. Gu, “Fiberlase TM: a monolithic hollow waveguide,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich eds., Proc. SPIE2131, 18–27 (1994).
[CrossRef]

Muller, G. J.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Nubling, R. K.

Onodera, S.

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristic of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 4–10 (1994).
[CrossRef]

Osawa, M.

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristic of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 4–10 (1994).
[CrossRef]

Saito, M.

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coatings in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

Schrunder, S.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Shimomura, T.

Y. Wang, A. Hongo, Y. Kato, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
[CrossRef] [PubMed]

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Shiota, T.

Suzumura, M.

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Tschepe, J.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, M. Miyagi, “Simultaneous measurement of optical constants of dispersive material at visible and infrared wavelengths,” Appl. Opt. 36, 877–884 (1997).
[CrossRef] [PubMed]

Y. Wang, A. Hongo, Y. Kato, T. Shimomura, D. Miura, M. Miyagi, “Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides,” Appl. Opt. 36, 2886–2892 (1997).
[CrossRef] [PubMed]

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium coated nickel hollow waveguide for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Electron. Lett. (1)

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristic of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

High Polym. (1)

M. Matsuo, “Recent development of cyclic olefin polymers: polymers derived from Dicyclopentadience (DCPD),” High Polym. 45, 652–656 (1996), in Japanese.

IEEE Trans. Biomed. Eng. (1)

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er-YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Infrared Phys. Technol. (1)

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coatings in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

Other (4)

Y. Kato, M. Osawa, M. Miyagi, M. Aizawa, S. Abe, S. Onodera, “New fabrication technique of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating for medical applications,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 4–10 (1994).
[CrossRef]

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow glass waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

C. E. Morrow, G. Gu, “Fiberlase TM: a monolithic hollow waveguide,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich eds., Proc. SPIE2131, 18–27 (1994).
[CrossRef]

M. B. Levy, K. D. Laakman, “Flexible waveguides for CO2 laser surgery,” in Optical and Laser Technology in Medicine, R. J. Landry, D. Sliney, R. Scott, eds., Proc. SPIE605, 57–58 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Extinction coefficients of (a) PI, (b) FCP, and (c) COP.

Fig. 2
Fig. 2

Loss spectra of COP/Ag, PI/Ag, and FCP/Ag waveguides in the visible and near-infrared regions. The inner diameter of the waveguides is 700 μm and the length is 2 m. Waveguides are excited by a Gaussian beam with 10.7° FWHM.

Fig. 3
Fig. 3

Bending losses of COP/Ag waveguides for the CO2 laser light transmission. The length of each waveguide is (a) 1 m and (b) 2 m.

Fig. 4
Fig. 4

Power-dependent transmission losses of a COP/Ag waveguide for CO laser light. The length of the waveguide is 1 m and the inner diameters are 700 μm and 1 mm.

Fig. 5
Fig. 5

Bending losses for the Er:YAG laser light of a COP/Ag waveguide with a length of 1 m and inner diameters of 540 μm, 700 μm, and 1 mm.

Tables (2)

Tables Icon

Table 1 Basic Physical and Optical Parameters of FCP, PI, and COP

Tables Icon

Table 2 Fabrication Conditions of COP/Ag Hollow Glass Waveguides for CO2, CO, and Er:YAG Lasers

Metrics