Abstract

Thin ferroelectric interferometers (TFI’s) for use as light-modulating devices were fabricated entirely with thin-film techniques on sapphire substrates. The ferroelectric layer in the TFI devices was a lead lanthanum zirconated titanate thin-film material, which can be formed from a chemical solution on highly reflective dielectric mirror surfaces. Light intensity modulation in both transmission and reflection modes was demonstrated with the fabricated devices. Experimental data and simulations show that TFI devices possess tremendous potential in spatial light modulators because of their fast-switching, low-driving voltage and readiness for integration with a variety of substrates, including silicon.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Johnson, D. J. McKnight, I. Underwood, “Smart spatial light modulators using liquid crystal on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
    [CrossRef]
  2. D. J. McKnight, K. M. Johnson, R. A. Serati, “256 × 256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 33, 2775–2784 (1994).
    [CrossRef] [PubMed]
  3. P. Tayebati, C. Hantzis, E. Canoglu, “An optically addressed modulator based on low-temperature-grown multiple quantum well GaAlAs,” Appl. Phys. Lett. 71, 446–448 (1997).
    [CrossRef]
  4. A. V. Krishnamoorthy, T. K. Woodward, K. W. Goossen, J. A. Walker, S. P. Hui, B. Tang, J. E. Cunningham, W. Y. Jan, F. E. Kiamilev, D. A. B. Miller, “Dual-function detector–modulator smart-pixel module,” Appl. Opt. 36, 4866–4870 (1997).
    [CrossRef] [PubMed]
  5. G. H. Haertling, “PLZT electrooptic materials and applications—a review,” Ferroelectrics 75, 25–55 (1987).
    [CrossRef]
  6. K. Wasa, O. Yamazaki, H. Adachi, T. Kawaguchi, K. Setsune, “Optical TIR switches using PLZT thin-film waveguides on sapphire,” IEEE J. Lightwave Technol. LT-2, 710–713 (1984).
    [CrossRef]
  7. T. H. Lin, A. Ersen, J. H. Wang, S. Dasgupta, S. Esener, S. H. Lee, “Two-dimensional spatial light modulators fabricated in Si/PLZT,” Appl. Opt. 29, 1595–1603 (1990).
    [CrossRef] [PubMed]
  8. M. S. Jin, J. H. Wang, V. Ozguz, S. H. Lee, “Monolithic integration of a silicon driver circuit onto a lead lanthanum zirconate titanate substrate for smart spatial light modulator fabrication,” Appl. Opt. 33, 2842–2848 (1994).
    [CrossRef] [PubMed]
  9. F. Wang, G. H. Haertling, “Large electrooptic modulation using ferroelectric thin films in a Fabry–Perot cavity,” in Proceedings of the Ninth IEEE International Symposium on Applications of Ferroelectrics (Institute of Electrical and Electronics Engineers, New York, 1994), pp. 683–686.
  10. F. Wang, G. H. Haertling, “Integrated reflection light modulator using a ferroelectric thin film material on silicon,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CThI22.
  11. The fundamentals of using Gires–Tournois etalon for optical phase modulation can be found in A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 290–293.
  12. F. Wang, D. Tsang, H. Jiang, K. K. Li, V. Fuflyigin, “Ferroelectric-on-silicon modulators for high density optical interconnects,” in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 414.
  13. F. Wang, E. Furman, G. H. Haertling, “Electro-optic measurements of thin-film materials by means of reflection differential ellipsometry,” J. Appl. Phys. 78, 9–15 (1995).
    [CrossRef]
  14. G. H. Haertling, “PLZT thin films prepared from acetate precursors,” Ferroelectrics 116, 51–63 (1991).
    [CrossRef]
  15. K. K. Li, G. H. Haertling, W.-Y. Howng, “An automatic dip coating process for dielectric thin and thick films,” Integrated Ferroelectrics 3, 81–91 (1993).
    [CrossRef]

1997

1995

F. Wang, E. Furman, G. H. Haertling, “Electro-optic measurements of thin-film materials by means of reflection differential ellipsometry,” J. Appl. Phys. 78, 9–15 (1995).
[CrossRef]

1994

1993

K. K. Li, G. H. Haertling, W.-Y. Howng, “An automatic dip coating process for dielectric thin and thick films,” Integrated Ferroelectrics 3, 81–91 (1993).
[CrossRef]

K. M. Johnson, D. J. McKnight, I. Underwood, “Smart spatial light modulators using liquid crystal on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[CrossRef]

1991

G. H. Haertling, “PLZT thin films prepared from acetate precursors,” Ferroelectrics 116, 51–63 (1991).
[CrossRef]

1990

1987

G. H. Haertling, “PLZT electrooptic materials and applications—a review,” Ferroelectrics 75, 25–55 (1987).
[CrossRef]

1984

K. Wasa, O. Yamazaki, H. Adachi, T. Kawaguchi, K. Setsune, “Optical TIR switches using PLZT thin-film waveguides on sapphire,” IEEE J. Lightwave Technol. LT-2, 710–713 (1984).
[CrossRef]

Adachi, H.

K. Wasa, O. Yamazaki, H. Adachi, T. Kawaguchi, K. Setsune, “Optical TIR switches using PLZT thin-film waveguides on sapphire,” IEEE J. Lightwave Technol. LT-2, 710–713 (1984).
[CrossRef]

Canoglu, E.

P. Tayebati, C. Hantzis, E. Canoglu, “An optically addressed modulator based on low-temperature-grown multiple quantum well GaAlAs,” Appl. Phys. Lett. 71, 446–448 (1997).
[CrossRef]

Cunningham, J. E.

Dasgupta, S.

Ersen, A.

Esener, S.

Fuflyigin, V.

F. Wang, D. Tsang, H. Jiang, K. K. Li, V. Fuflyigin, “Ferroelectric-on-silicon modulators for high density optical interconnects,” in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 414.

Furman, E.

F. Wang, E. Furman, G. H. Haertling, “Electro-optic measurements of thin-film materials by means of reflection differential ellipsometry,” J. Appl. Phys. 78, 9–15 (1995).
[CrossRef]

Goossen, K. W.

Haertling, G. H.

F. Wang, E. Furman, G. H. Haertling, “Electro-optic measurements of thin-film materials by means of reflection differential ellipsometry,” J. Appl. Phys. 78, 9–15 (1995).
[CrossRef]

K. K. Li, G. H. Haertling, W.-Y. Howng, “An automatic dip coating process for dielectric thin and thick films,” Integrated Ferroelectrics 3, 81–91 (1993).
[CrossRef]

G. H. Haertling, “PLZT thin films prepared from acetate precursors,” Ferroelectrics 116, 51–63 (1991).
[CrossRef]

G. H. Haertling, “PLZT electrooptic materials and applications—a review,” Ferroelectrics 75, 25–55 (1987).
[CrossRef]

F. Wang, G. H. Haertling, “Large electrooptic modulation using ferroelectric thin films in a Fabry–Perot cavity,” in Proceedings of the Ninth IEEE International Symposium on Applications of Ferroelectrics (Institute of Electrical and Electronics Engineers, New York, 1994), pp. 683–686.

F. Wang, G. H. Haertling, “Integrated reflection light modulator using a ferroelectric thin film material on silicon,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CThI22.

Hantzis, C.

P. Tayebati, C. Hantzis, E. Canoglu, “An optically addressed modulator based on low-temperature-grown multiple quantum well GaAlAs,” Appl. Phys. Lett. 71, 446–448 (1997).
[CrossRef]

Howng, W.-Y.

K. K. Li, G. H. Haertling, W.-Y. Howng, “An automatic dip coating process for dielectric thin and thick films,” Integrated Ferroelectrics 3, 81–91 (1993).
[CrossRef]

Hui, S. P.

Jan, W. Y.

Jiang, H.

F. Wang, D. Tsang, H. Jiang, K. K. Li, V. Fuflyigin, “Ferroelectric-on-silicon modulators for high density optical interconnects,” in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 414.

Jin, M. S.

Johnson, K. M.

D. J. McKnight, K. M. Johnson, R. A. Serati, “256 × 256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 33, 2775–2784 (1994).
[CrossRef] [PubMed]

K. M. Johnson, D. J. McKnight, I. Underwood, “Smart spatial light modulators using liquid crystal on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[CrossRef]

Kawaguchi, T.

K. Wasa, O. Yamazaki, H. Adachi, T. Kawaguchi, K. Setsune, “Optical TIR switches using PLZT thin-film waveguides on sapphire,” IEEE J. Lightwave Technol. LT-2, 710–713 (1984).
[CrossRef]

Kiamilev, F. E.

Krishnamoorthy, A. V.

Lee, S. H.

Li, K. K.

K. K. Li, G. H. Haertling, W.-Y. Howng, “An automatic dip coating process for dielectric thin and thick films,” Integrated Ferroelectrics 3, 81–91 (1993).
[CrossRef]

F. Wang, D. Tsang, H. Jiang, K. K. Li, V. Fuflyigin, “Ferroelectric-on-silicon modulators for high density optical interconnects,” in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 414.

Lin, T. H.

McKnight, D. J.

D. J. McKnight, K. M. Johnson, R. A. Serati, “256 × 256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 33, 2775–2784 (1994).
[CrossRef] [PubMed]

K. M. Johnson, D. J. McKnight, I. Underwood, “Smart spatial light modulators using liquid crystal on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[CrossRef]

Miller, D. A. B.

Ozguz, V.

Serati, R. A.

Setsune, K.

K. Wasa, O. Yamazaki, H. Adachi, T. Kawaguchi, K. Setsune, “Optical TIR switches using PLZT thin-film waveguides on sapphire,” IEEE J. Lightwave Technol. LT-2, 710–713 (1984).
[CrossRef]

Tang, B.

Tayebati, P.

P. Tayebati, C. Hantzis, E. Canoglu, “An optically addressed modulator based on low-temperature-grown multiple quantum well GaAlAs,” Appl. Phys. Lett. 71, 446–448 (1997).
[CrossRef]

Tsang, D.

F. Wang, D. Tsang, H. Jiang, K. K. Li, V. Fuflyigin, “Ferroelectric-on-silicon modulators for high density optical interconnects,” in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 414.

Underwood, I.

K. M. Johnson, D. J. McKnight, I. Underwood, “Smart spatial light modulators using liquid crystal on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[CrossRef]

Walker, J. A.

Wang, F.

F. Wang, E. Furman, G. H. Haertling, “Electro-optic measurements of thin-film materials by means of reflection differential ellipsometry,” J. Appl. Phys. 78, 9–15 (1995).
[CrossRef]

F. Wang, G. H. Haertling, “Large electrooptic modulation using ferroelectric thin films in a Fabry–Perot cavity,” in Proceedings of the Ninth IEEE International Symposium on Applications of Ferroelectrics (Institute of Electrical and Electronics Engineers, New York, 1994), pp. 683–686.

F. Wang, D. Tsang, H. Jiang, K. K. Li, V. Fuflyigin, “Ferroelectric-on-silicon modulators for high density optical interconnects,” in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 414.

F. Wang, G. H. Haertling, “Integrated reflection light modulator using a ferroelectric thin film material on silicon,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CThI22.

Wang, J. H.

Wasa, K.

K. Wasa, O. Yamazaki, H. Adachi, T. Kawaguchi, K. Setsune, “Optical TIR switches using PLZT thin-film waveguides on sapphire,” IEEE J. Lightwave Technol. LT-2, 710–713 (1984).
[CrossRef]

Woodward, T. K.

Yamazaki, O.

K. Wasa, O. Yamazaki, H. Adachi, T. Kawaguchi, K. Setsune, “Optical TIR switches using PLZT thin-film waveguides on sapphire,” IEEE J. Lightwave Technol. LT-2, 710–713 (1984).
[CrossRef]

Yariv, A.

The fundamentals of using Gires–Tournois etalon for optical phase modulation can be found in A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 290–293.

Yeh, P.

The fundamentals of using Gires–Tournois etalon for optical phase modulation can be found in A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 290–293.

Appl. Opt.

Appl. Phys. Lett.

P. Tayebati, C. Hantzis, E. Canoglu, “An optically addressed modulator based on low-temperature-grown multiple quantum well GaAlAs,” Appl. Phys. Lett. 71, 446–448 (1997).
[CrossRef]

Ferroelectrics

G. H. Haertling, “PLZT electrooptic materials and applications—a review,” Ferroelectrics 75, 25–55 (1987).
[CrossRef]

G. H. Haertling, “PLZT thin films prepared from acetate precursors,” Ferroelectrics 116, 51–63 (1991).
[CrossRef]

IEEE J. Lightwave Technol.

K. Wasa, O. Yamazaki, H. Adachi, T. Kawaguchi, K. Setsune, “Optical TIR switches using PLZT thin-film waveguides on sapphire,” IEEE J. Lightwave Technol. LT-2, 710–713 (1984).
[CrossRef]

IEEE J. Quantum Electron.

K. M. Johnson, D. J. McKnight, I. Underwood, “Smart spatial light modulators using liquid crystal on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993).
[CrossRef]

Integrated Ferroelectrics

K. K. Li, G. H. Haertling, W.-Y. Howng, “An automatic dip coating process for dielectric thin and thick films,” Integrated Ferroelectrics 3, 81–91 (1993).
[CrossRef]

J. Appl. Phys.

F. Wang, E. Furman, G. H. Haertling, “Electro-optic measurements of thin-film materials by means of reflection differential ellipsometry,” J. Appl. Phys. 78, 9–15 (1995).
[CrossRef]

Other

F. Wang, G. H. Haertling, “Large electrooptic modulation using ferroelectric thin films in a Fabry–Perot cavity,” in Proceedings of the Ninth IEEE International Symposium on Applications of Ferroelectrics (Institute of Electrical and Electronics Engineers, New York, 1994), pp. 683–686.

F. Wang, G. H. Haertling, “Integrated reflection light modulator using a ferroelectric thin film material on silicon,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CThI22.

The fundamentals of using Gires–Tournois etalon for optical phase modulation can be found in A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 290–293.

F. Wang, D. Tsang, H. Jiang, K. K. Li, V. Fuflyigin, “Ferroelectric-on-silicon modulators for high density optical interconnects,” in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 414.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Structure of the TFI device.

Fig. 2
Fig. 2

Calculated reflectivity of the TFI device as a function of the light wavelength. Dashed and solid curves show the reflectivity of the device with and without an applied electric field, respectively.

Fig. 3
Fig. 3

Calculated intensity modulation characteristic curve for a TFI device that uses the PLZT material with a quadratic electro-optic coefficient (solid curve) and an equivalent linear electro-optic coefficient from a bias field (dashed curve).

Fig. 4
Fig. 4

Calculated switching speed of the TFI devices in SLM’s as a function of the pixel size under given driving current values.

Fig. 5
Fig. 5

Scanning-electron-microscope picture of the cleaved cross section of a TFI device fabricated with the thin-film processing techniques.

Fig. 6
Fig. 6

Measured spectral transmission of the fabricated TFI on a sapphire substrate.

Fig. 7
Fig. 7

Measured shift of resonant transmission peak of the fabricated TFI device. Solid curve, transmission peak without applied voltage; dashed curve, peak when 20 V is applied to the device.

Fig. 8
Fig. 8

Measured intensity modulation in the reflected light from a TFI device with a thin gold top mirror and a dielectric bottom mirror. The reflectivity of the device at <30 V is approximately 20% of the incident light.

Metrics