Abstract

Acousto-optic (AO) devices are important spatial light modulators. They can be used as light-beam deflectors, rf true-time-delay lines, etc. To increase their spur-free dynamic range, we present what to our knowledge is a novel multichannel AO device structure, in which different channels have different carrier frequencies, so a wideband signal can automatically be decomposed into a set of narrow-band signals. Design, fabrication, and testing of this 24-channel, 10-μs AO spatial light modulator are addressed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Goutzoulis, D. R. Pape, Design and Fabrication of Acousto-Optic Devices (Dekker, New York, 1994).
  2. N. J. Berg, J. M. Pellegrino, Acousto-Optic Signal Processing (Dekker, New York, 1996).
  3. J. Xu, R. Stroud, Acousto-Optic Devices: Principles, Design and Applications (Wiley, New York, 1992).
  4. J. F. Rhodes, “Adaptive filter with a time-domain implementation using correlation cancellation loops,” Appl. Opt. 22, 282–287 (1983).
    [CrossRef] [PubMed]
  5. Brimrose Corporation of America, 5020 Campbell Boulevard, Baltimore, MD 21236-4968.
  6. V. V. Kludzin, S. V. Kulakov, V. V. Molotok, “Perspectives of projecting multichannel acousto-optic cells with low crosstalk,” in Photorefractive Fiber and Crystal Devices, F. Yu, Sh. Yin, eds., Proc. SPIE3137, 158–161 (1997).
    [CrossRef]
  7. V. Stasevich, Monocrystal Technology (Radio I Svyaz’, Moscow, 1990), p. 272.

1983

Berg, N. J.

N. J. Berg, J. M. Pellegrino, Acousto-Optic Signal Processing (Dekker, New York, 1996).

Goutzoulis, A. P.

A. P. Goutzoulis, D. R. Pape, Design and Fabrication of Acousto-Optic Devices (Dekker, New York, 1994).

Kludzin, V. V.

V. V. Kludzin, S. V. Kulakov, V. V. Molotok, “Perspectives of projecting multichannel acousto-optic cells with low crosstalk,” in Photorefractive Fiber and Crystal Devices, F. Yu, Sh. Yin, eds., Proc. SPIE3137, 158–161 (1997).
[CrossRef]

Kulakov, S. V.

V. V. Kludzin, S. V. Kulakov, V. V. Molotok, “Perspectives of projecting multichannel acousto-optic cells with low crosstalk,” in Photorefractive Fiber and Crystal Devices, F. Yu, Sh. Yin, eds., Proc. SPIE3137, 158–161 (1997).
[CrossRef]

Molotok, V. V.

V. V. Kludzin, S. V. Kulakov, V. V. Molotok, “Perspectives of projecting multichannel acousto-optic cells with low crosstalk,” in Photorefractive Fiber and Crystal Devices, F. Yu, Sh. Yin, eds., Proc. SPIE3137, 158–161 (1997).
[CrossRef]

Pape, D. R.

A. P. Goutzoulis, D. R. Pape, Design and Fabrication of Acousto-Optic Devices (Dekker, New York, 1994).

Pellegrino, J. M.

N. J. Berg, J. M. Pellegrino, Acousto-Optic Signal Processing (Dekker, New York, 1996).

Rhodes, J. F.

Stasevich, V.

V. Stasevich, Monocrystal Technology (Radio I Svyaz’, Moscow, 1990), p. 272.

Stroud, R.

J. Xu, R. Stroud, Acousto-Optic Devices: Principles, Design and Applications (Wiley, New York, 1992).

Xu, J.

J. Xu, R. Stroud, Acousto-Optic Devices: Principles, Design and Applications (Wiley, New York, 1992).

Appl. Opt.

Other

A. P. Goutzoulis, D. R. Pape, Design and Fabrication of Acousto-Optic Devices (Dekker, New York, 1994).

N. J. Berg, J. M. Pellegrino, Acousto-Optic Signal Processing (Dekker, New York, 1996).

J. Xu, R. Stroud, Acousto-Optic Devices: Principles, Design and Applications (Wiley, New York, 1992).

Brimrose Corporation of America, 5020 Campbell Boulevard, Baltimore, MD 21236-4968.

V. V. Kludzin, S. V. Kulakov, V. V. Molotok, “Perspectives of projecting multichannel acousto-optic cells with low crosstalk,” in Photorefractive Fiber and Crystal Devices, F. Yu, Sh. Yin, eds., Proc. SPIE3137, 158–161 (1997).
[CrossRef]

V. Stasevich, Monocrystal Technology (Radio I Svyaz’, Moscow, 1990), p. 272.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Generalized structure of AO set. BPF, bandpass filter; MBC, multichannel Bragg cell.

Fig. 2
Fig. 2

Principle of the quasi-collinear diffraction technique.

Fig. 3
Fig. 3

24-channel AO delay-line structure (top side).

Fig. 4
Fig. 4

Photography of the fabricated 24-channel AO delay line (AODL).

Fig. 5
Fig. 5

Testing setup.

Fig. 6
Fig. 6

Testing results.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I d / I I = sin 2 π fL Δ n c ,
η f = sin 2 π 2 λ 2 k em k p PM 2 l / H 1 / 2 ,
α f = Γ f 2 x 20 lge
w x ,   f = exp - α f .
TBWP = 0.46 f y 10 9 f pc 1 - y L V 2 α L ,
L = V τ .
A = N - 1 S + H + 3 ,
B = l + 3 ,
S = H + G ,
H = Λ max L | 1 - 2 b | 1 / 2 = V τ f min | 1 - 2 b | 1 / 2 ,
l = 1.8 nV 2 λ f pc Δ f ch ,
t = Λ t / 2 = V t / 2 f pc .
Q = 2 π l λ nV 2   f pc 2 .

Metrics