Abstract

Mixtures of methane, hydrogen, and argon (CH4:H2:Ar) were studied as UV Raman shifters for ozone differential absorption lidar application. They have higher photochemical stability than pure CH4 and the capability to produce, with high enough efficiency, either first CH4 Stokes or, simultaneously, CH4 and H2 first Stokes with equal energies. These mixtures can be used as an inexpensive replacement for D2 or a more stable substitute for pure CH4 in single-pass high-power Raman shifters.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
    [CrossRef]
  2. J. Boesenberg, ed., “Tropospheric environmental studies by laser sounding,” Final report to the project TESLAS-EUROTRAC (Max-Planck Institut für Meteorologie, Hamburg, Germany, 1996).
  3. B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).
  4. U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide range UV lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
    [CrossRef]
  5. J. A. Sunesson, A. Apituley, D. P. D. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994).
    [CrossRef] [PubMed]
  6. L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. van den Bergh, “Experimental Investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5043 (1997).
    [CrossRef] [PubMed]
  7. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
    [CrossRef] [PubMed]
  8. L. de Schoulepnikoff, V. Mitev, “High-gain single-pass stimulated Raman scattering and four-wave mixing in a focused beam geometry: a numerical study,” Pure Appl. Opt. 6, 277–302 (1997).
    [CrossRef]
  9. G. Bjorklund, “Effects of focusing on third-order nonlinear process in isotopic media,” IEEE J. Quantum Electron. QE-11, 287–296 (1975).
    [CrossRef]
  10. Z. Chu, U. Singh, T. Wilkerson, “Multiple Stokes wavelength generation in H2, D2, and CH4 for lidar aerosol measurements,” Appl. Opt. 30, 4350–4357 (1991).
    [CrossRef] [PubMed]

1997 (4)

L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. van den Bergh, “Experimental Investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5043 (1997).
[CrossRef] [PubMed]

J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, J. L. Bufton, “Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475–3490 (1997).
[CrossRef] [PubMed]

L. de Schoulepnikoff, V. Mitev, “High-gain single-pass stimulated Raman scattering and four-wave mixing in a focused beam geometry: a numerical study,” Pure Appl. Opt. 6, 277–302 (1997).
[CrossRef]

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

1994 (2)

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide range UV lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

J. A. Sunesson, A. Apituley, D. P. D. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[CrossRef]

1975 (1)

G. Bjorklund, “Effects of focusing on third-order nonlinear process in isotopic media,” IEEE J. Quantum Electron. QE-11, 287–296 (1975).
[CrossRef]

Apituley, A.

Bjorklund, G.

G. Bjorklund, “Effects of focusing on third-order nonlinear process in isotopic media,” IEEE J. Quantum Electron. QE-11, 287–296 (1975).
[CrossRef]

Bufton, J. L.

Calpini, B.

L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. van den Bergh, “Experimental Investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5043 (1997).
[CrossRef] [PubMed]

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

Carnuth, W.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide range UV lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Cavanaugh, J. F.

Chu, Z.

Chudamani, S.

de Schoulepnikoff, L.

L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. van den Bergh, “Experimental Investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5043 (1997).
[CrossRef] [PubMed]

L. de Schoulepnikoff, V. Mitev, “High-gain single-pass stimulated Raman scattering and four-wave mixing in a focused beam geometry: a numerical study,” Pure Appl. Opt. 6, 277–302 (1997).
[CrossRef]

Haner, D. A.

D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[CrossRef]

Jeanneret, F.

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

Kempfer, U.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide range UV lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Kuebler, J.

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

Lotz, R.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide range UV lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

McDermid, I. S.

D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[CrossRef]

Mitev, V.

L. de Schoulepnikoff, V. Mitev, “High-gain single-pass stimulated Raman scattering and four-wave mixing in a focused beam geometry: a numerical study,” Pure Appl. Opt. 6, 277–302 (1997).
[CrossRef]

L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. van den Bergh, “Experimental Investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5043 (1997).
[CrossRef] [PubMed]

Sathya, V.

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

Simeonov, V.

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. van den Bergh, “Experimental Investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5043 (1997).
[CrossRef] [PubMed]

Singh, U.

Spinhirne, J. D.

Sunesson, J. A.

Swart, D. P. D.

Trickl, T.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide range UV lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

van den Bergh, H.

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. van den Bergh, “Experimental Investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5043 (1997).
[CrossRef] [PubMed]

Wilkerson, T.

Appl. Opt. (4)

Chimia (1)

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

IEEE J. Quantum Electron. (2)

D. A. Haner, I. S. McDermid, “Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD, and D2,” IEEE J. Quantum Electron. 26, 1292–1298 (1990).
[CrossRef]

G. Bjorklund, “Effects of focusing on third-order nonlinear process in isotopic media,” IEEE J. Quantum Electron. QE-11, 287–296 (1975).
[CrossRef]

Pure Appl. Opt. (1)

L. de Schoulepnikoff, V. Mitev, “High-gain single-pass stimulated Raman scattering and four-wave mixing in a focused beam geometry: a numerical study,” Pure Appl. Opt. 6, 277–302 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide range UV lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Other (1)

J. Boesenberg, ed., “Tropospheric environmental studies by laser sounding,” Final report to the project TESLAS-EUROTRAC (Max-Planck Institut für Meteorologie, Hamburg, Germany, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Raman conversion efficiency for a mixture of 6-atm CH4 and 10-atm H2 versus Ar partial pressure.

Fig. 2
Fig. 2

Raman conversion efficiency for two different mixtures, 4-atm CH4 and 11-atm H2 (mixture 1) and 10-atm CH4 and 6-atm H2 (mixture 2) versus Ar partial pressure.

Tables (1)

Tables Icon

Table 1 Relative Efficiencies of the Various FWM Processes in a Mixture of 6-atm CH4, 10-atm H2, and Ar Normalized to the Efficiency for the Respective Process at 0-atm Ara

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g s = Ap / Δ ν s ,
η = Bp 2 exp - b | Δ k | ,

Metrics