Abstract

The red side (lower-frequency) mode of a two-mode stabilized 633-nm He–Ne laser has been locked to the hyperfine structure of the P(33) line of 127I2 by means of frequency modulation spectroscopy enhanced by an external optical cavity. Both the red side and blue side (higher-frequency) modes of the laser exhibit a frequency stability of 2.3 × 10-11 τ-1/2. In addition, the frequency fluctuations of the blue side mode are detected by a Fabry–Perot cavity and compensated through an acousto-optic frequency shifter. The short-term stability of better than 3 × 10-11 is attained for integration times of between 2 × 10-3 and 2 × 10-1 s.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Balhorn, H. Kunzmann, F. Lebowsky, “Frequency stabilization of internal-mirror helium–neon lasers,” Appl. Opt. 11, 742–744 (1972).
    [CrossRef] [PubMed]
  2. T. J. Quinn, “Mise en pratique of the definition of the metre (1992),” Metrologia 30, 523–541 (1993/94).
  3. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef] [PubMed]
  4. J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
    [CrossRef]
  5. M. Long-sheng, J. L. Hall, “Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards,” IEEE J. Quantum Electron. 26, 2006–2012 (1990).
    [CrossRef]
  6. J. L. Hall, T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9, 502–504 (1984).
    [CrossRef] [PubMed]
  7. T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
    [CrossRef]
  8. J. M. Chartier, J. Labot, G. Sasagawa, T. M. Niebauer, W. Hollander, “A portable iodine stabilized He–Ne laser and its use in an absolute gravimeter,” IEEE Trans. Instrum. Meas. 42, 420–422 (1993).
    [CrossRef]

1993 (1)

J. M. Chartier, J. Labot, G. Sasagawa, T. M. Niebauer, W. Hollander, “A portable iodine stabilized He–Ne laser and its use in an absolute gravimeter,” IEEE Trans. Instrum. Meas. 42, 420–422 (1993).
[CrossRef]

1990 (1)

M. Long-sheng, J. L. Hall, “Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards,” IEEE J. Quantum Electron. 26, 2006–2012 (1990).
[CrossRef]

1984 (1)

1981 (1)

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

1980 (2)

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
[CrossRef] [PubMed]

1972 (1)

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Balhorn, R.

Bjorklund, G. C.

Chartier, J. M.

J. M. Chartier, J. Labot, G. Sasagawa, T. M. Niebauer, W. Hollander, “A portable iodine stabilized He–Ne laser and its use in an absolute gravimeter,” IEEE Trans. Instrum. Meas. 42, 420–422 (1993).
[CrossRef]

Couillaud, B.

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Hall, J. L.

M. Long-sheng, J. L. Hall, “Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards,” IEEE J. Quantum Electron. 26, 2006–2012 (1990).
[CrossRef]

J. L. Hall, T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9, 502–504 (1984).
[CrossRef] [PubMed]

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Hänsch, T. W.

J. L. Hall, T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9, 502–504 (1984).
[CrossRef] [PubMed]

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Hollander, W.

J. M. Chartier, J. Labot, G. Sasagawa, T. M. Niebauer, W. Hollander, “A portable iodine stabilized He–Ne laser and its use in an absolute gravimeter,” IEEE Trans. Instrum. Meas. 42, 420–422 (1993).
[CrossRef]

Hollberg, L.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Kunzmann, H.

Labot, J.

J. M. Chartier, J. Labot, G. Sasagawa, T. M. Niebauer, W. Hollander, “A portable iodine stabilized He–Ne laser and its use in an absolute gravimeter,” IEEE Trans. Instrum. Meas. 42, 420–422 (1993).
[CrossRef]

Lebowsky, F.

Long-sheng, M.

M. Long-sheng, J. L. Hall, “Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards,” IEEE J. Quantum Electron. 26, 2006–2012 (1990).
[CrossRef]

Niebauer, T. M.

J. M. Chartier, J. Labot, G. Sasagawa, T. M. Niebauer, W. Hollander, “A portable iodine stabilized He–Ne laser and its use in an absolute gravimeter,” IEEE Trans. Instrum. Meas. 42, 420–422 (1993).
[CrossRef]

Quinn, T. J.

T. J. Quinn, “Mise en pratique of the definition of the metre (1992),” Metrologia 30, 523–541 (1993/94).

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Sasagawa, G.

J. M. Chartier, J. Labot, G. Sasagawa, T. M. Niebauer, W. Hollander, “A portable iodine stabilized He–Ne laser and its use in an absolute gravimeter,” IEEE Trans. Instrum. Meas. 42, 420–422 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Long-sheng, J. L. Hall, “Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards,” IEEE J. Quantum Electron. 26, 2006–2012 (1990).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

J. M. Chartier, J. Labot, G. Sasagawa, T. M. Niebauer, W. Hollander, “A portable iodine stabilized He–Ne laser and its use in an absolute gravimeter,” IEEE Trans. Instrum. Meas. 42, 420–422 (1993).
[CrossRef]

Metrologia (1)

T. J. Quinn, “Mise en pratique of the definition of the metre (1992),” Metrologia 30, 523–541 (1993/94).

Opt. Commun. (1)

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for locking the two-mode stabilized laser to the hyperfine structure of 127I2 by means of frequency modulation spectroscopy enhanced by an external optical cavity: PBS, polarizing beam splitter; HWP, half-wave plate; L, lens; M, mirror; BS, beam splitter; AOM, acousto-optic modulator; EOM, electro-optic modulator; PD, photodiode; LIA, lock-in amplifier; OSC, oscillator; PZT, piezoelectric transducer.

Fig. 2
Fig. 2

Hyperfine components of the R(127) and P(33) lines of 127I2 resolved by frequency modulation spectroscopy enhanced by an external optical cavity.

Fig. 3
Fig. 3

Frequency stabilities of the two-mode stabilized laser before and after it was locked to the hyperfine component of 127I2.

Fig. 4
Fig. 4

Experimental setup to improve the short-term stability of the two-mode stabilized laser. The frequency fluctuations of the blue side mode of the laser were corrected by the AOM while the red side mode was locked to the hyperfine structure of 127I2: LPF, low-pass filter; PBS, polarizing beam splitter; HWP, half-wave plate; AOM, acousto-optic modulator; EOM, electro-optic modulator; PD, photodiode; APD, avalanche photodiode; P, proportional amplifier; OSC, oscillation; PZT, piezoelectric transducer; VCO, voltage-controlled oscillator.

Fig. 5
Fig. 5

Allan variance plots of the frequency fluctuations observed through the Fabry–Perot cavity before and after fluctuation are compensated by the AOM.

Metrics