Abstract

The application of photomultiplier gain modulation to the compression of wide-dynamic-range lidar signals is investigated in relation to the effect of the gain level on anode-signal linearity. Gain reduction is achieved by the coupling of modulation signals through either multidynode or focus-grid gating networks. This technique facilitates signal recovery and prevents detector nonlinearity and dynode damage caused by high near-field lidar signals. The measurements were performed in the current mode primarily on a 50-mm-diameter, 12-stage photomultiplier (EMI 9214) with a bialkali photocathode. With 3- or 4-dynode-based modulation made at a photomultiplier voltage of 1300 V and a gain of 1 × 107, signals of ∼6 mA can be maintained at the 1% linearity limit from 100% to 0.2% modulation, corresponding to a 500-fold reduction in the lidar-signal dynamic range. A significant advantage to dynode modulation is that it preserves the shot-signal-to-noise ratio of the incoming signal, which is not true for focus-grid modulation or external predetection schemes such as controlled obscuration or Pockels-cell modulation that attenuate the as-yet unamplified signal.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Shimizu, Y. Sasano, H. Nakane, N. Sugimoto, I. Matsui, N. Takeuchi, “Large scale laser radar for measuring aerosol distribution over a wide area,” Appl. Opt. 24, 617–626 (1985).
    [CrossRef] [PubMed]
  2. S. Lehmann, V. Wulfmeyer, J. Bösenberg, “Time-dependent attenuator for dynamic range reduction of lidar signals,” Appl. Opt. 36, 3469–3474 (1997).
    [CrossRef] [PubMed]
  3. M. P. Bristow, D. H. Bundy, A. G. Wright, “Signal linearity, gain stability, and gating in photomultipliers: application to differential adsorption lidar,” Appl. Opt. 34, 4437–4452 (1995).
    [CrossRef] [PubMed]
  4. R. A. Kaplan, R. J. Daly, “Performance limits and design procedure for all-weather terrestrial rangefinders,” IEEE J. Quantum Electron. QE3, 428–435 (1967).
    [CrossRef]
  5. V. Cohen, “Gain correction in laser rangefinders,” Electron. Eng. 40, 260–262 (1968).
  6. R. J. Allen, W. E. Evans, “Laser radar (LIDAR) for mapping aerosol structure,” Rev. Sci. Instrum. 43, 1422–1432 (1972).
    [CrossRef]
  7. E. V. Browell, A. F. Carter, S. T. Shipley, R. J. Allen, C. F. Butler, M. N. Mayo, J. H. Siviter, W. H. Hall, “NASA multipurpose airborne DIAL system and measurements of ozone aerosol profiles,” Appl. Opt. 22, 522–534 (1983).
    [CrossRef] [PubMed]
  8. H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Unéus, W. Wendt, “Mobile remote sensing system for atmospheric monitoring,” Appl. Opt. 26, 4330–4338 (1987).
    [CrossRef] [PubMed]
  9. H. J. Kölsch, P. Rairoux, J. P. Wolf, L. Wöste, “Simultaneous NO and NO2 DIAL measurement using BBO crystals,” Appl. Opt. 28, 2052–2056 (1989).
    [CrossRef] [PubMed]
  10. U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
    [CrossRef]
  11. “Photomultiplier tubes: principles and applications,” Publ. D-PMT-AB/USA (Philips Photonics, Slaterville, R.I., 1994).
  12. R. W. Engstrom, “RCA photomultiplier handbook,” Publ. PMT-62, 1980 (available from Burle Industries, Inc., Lancaster, Pa., as Publ. TP-136, 1989).
  13. J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” in Advances in Electronics and Electron Physics, P. W. Hawkes, ed. (Academic, New York, 1983), Vol. 60, pp. 223–305.
    [CrossRef]
  14. “Light sources, monochromators, spectrographs, detectors, and fiber optics,” Oriel Catalogue (Oriel Corp., Stratford, Conn., 1994), Vol. 2, pp. 4–7.
  15. C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
    [CrossRef]
  16. R. W. Engstrom, E. Fischer, “Effects of voltage-divider characteristics on multiplier phototube response,” Rev. Sci. Instrum. 28, 525–527 (1957).
    [CrossRef]
  17. “Voltage divider design,” Applications Note R/P 069 (Thorn EMI Electron Tubes, Ltd., Ruislip, Middlesex, UK, 1982).
  18. Y. K. Semertzidis, F. J. M. Farley, “Effect of light flash on photocathodes,” Nucl. Instrum. Methods A 394, 7–12 (1997).
    [CrossRef]
  19. Photomultiplier Catalogue, Publ. PMC/93 (Thorn EMI Electron Tubes, Ltd., Ruislip, Middlesex, UK, 1993).

1997 (2)

S. Lehmann, V. Wulfmeyer, J. Bösenberg, “Time-dependent attenuator for dynamic range reduction of lidar signals,” Appl. Opt. 36, 3469–3474 (1997).
[CrossRef] [PubMed]

Y. K. Semertzidis, F. J. M. Farley, “Effect of light flash on photocathodes,” Nucl. Instrum. Methods A 394, 7–12 (1997).
[CrossRef]

1996 (1)

C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
[CrossRef]

1995 (1)

1994 (1)

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

1989 (1)

1987 (1)

1985 (1)

1983 (1)

1972 (1)

R. J. Allen, W. E. Evans, “Laser radar (LIDAR) for mapping aerosol structure,” Rev. Sci. Instrum. 43, 1422–1432 (1972).
[CrossRef]

1968 (1)

V. Cohen, “Gain correction in laser rangefinders,” Electron. Eng. 40, 260–262 (1968).

1967 (1)

R. A. Kaplan, R. J. Daly, “Performance limits and design procedure for all-weather terrestrial rangefinders,” IEEE J. Quantum Electron. QE3, 428–435 (1967).
[CrossRef]

1957 (1)

R. W. Engstrom, E. Fischer, “Effects of voltage-divider characteristics on multiplier phototube response,” Rev. Sci. Instrum. 28, 525–527 (1957).
[CrossRef]

Allen, R. J.

Boardman, A. D.

C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
[CrossRef]

Bösenberg, J.

Boutot, J. P.

J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” in Advances in Electronics and Electron Physics, P. W. Hawkes, ed. (Academic, New York, 1983), Vol. 60, pp. 223–305.
[CrossRef]

Bristow, M. P.

Browell, E. V.

Bundy, D. H.

Butler, C. F.

Carnuth, W.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Carter, A. F.

Cohen, V.

V. Cohen, “Gain correction in laser rangefinders,” Electron. Eng. 40, 260–262 (1968).

Daly, R. J.

R. A. Kaplan, R. J. Daly, “Performance limits and design procedure for all-weather terrestrial rangefinders,” IEEE J. Quantum Electron. QE3, 428–435 (1967).
[CrossRef]

Edner, H.

Engstrom, R. W.

R. W. Engstrom, E. Fischer, “Effects of voltage-divider characteristics on multiplier phototube response,” Rev. Sci. Instrum. 28, 525–527 (1957).
[CrossRef]

Evans, W. E.

R. J. Allen, W. E. Evans, “Laser radar (LIDAR) for mapping aerosol structure,” Rev. Sci. Instrum. 43, 1422–1432 (1972).
[CrossRef]

Farley, F. J. M.

Y. K. Semertzidis, F. J. M. Farley, “Effect of light flash on photocathodes,” Nucl. Instrum. Methods A 394, 7–12 (1997).
[CrossRef]

Fischer, E.

R. W. Engstrom, E. Fischer, “Effects of voltage-divider characteristics on multiplier phototube response,” Rev. Sci. Instrum. 28, 525–527 (1957).
[CrossRef]

Fredriksson, K.

Hall, W. H.

Hua, Y.

C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
[CrossRef]

Kaplan, R. A.

R. A. Kaplan, R. J. Daly, “Performance limits and design procedure for all-weather terrestrial rangefinders,” IEEE J. Quantum Electron. QE3, 428–435 (1967).
[CrossRef]

Kempfer, U.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Kölsch, H. J.

Lehmann, S.

Lotz, R.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Matsui, I.

Mayo, M. N.

Mitchell, A. C.

C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
[CrossRef]

Morgan, C. G.

C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
[CrossRef]

Murray, J. G.

C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
[CrossRef]

Nakane, H.

Nussli, J.

J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” in Advances in Electronics and Electron Physics, P. W. Hawkes, ed. (Academic, New York, 1983), Vol. 60, pp. 223–305.
[CrossRef]

Rairoux, P.

Sasano, Y.

Semertzidis, Y. K.

Y. K. Semertzidis, F. J. M. Farley, “Effect of light flash on photocathodes,” Nucl. Instrum. Methods A 394, 7–12 (1997).
[CrossRef]

Shimizu, H.

Shipley, S. T.

Siviter, J. H.

Sugimoto, N.

Sunesson, A.

Svanberg, S.

Takeuchi, N.

Trickl, T.

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Unéus, L.

Vallat, D.

J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” in Advances in Electronics and Electron Physics, P. W. Hawkes, ed. (Academic, New York, 1983), Vol. 60, pp. 223–305.
[CrossRef]

Wendt, W.

Wolf, J. P.

Wöste, L.

Wright, A. G.

Wulfmeyer, V.

Appl. Opt. (6)

Electron. Eng. (1)

V. Cohen, “Gain correction in laser rangefinders,” Electron. Eng. 40, 260–262 (1968).

IEEE J. Quantum Electron. (1)

R. A. Kaplan, R. J. Daly, “Performance limits and design procedure for all-weather terrestrial rangefinders,” IEEE J. Quantum Electron. QE3, 428–435 (1967).
[CrossRef]

Nucl. Instrum. Methods A (1)

Y. K. Semertzidis, F. J. M. Farley, “Effect of light flash on photocathodes,” Nucl. Instrum. Methods A 394, 7–12 (1997).
[CrossRef]

Rev. Sci. Instrum. (4)

R. J. Allen, W. E. Evans, “Laser radar (LIDAR) for mapping aerosol structure,” Rev. Sci. Instrum. 43, 1422–1432 (1972).
[CrossRef]

C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996).
[CrossRef]

R. W. Engstrom, E. Fischer, “Effects of voltage-divider characteristics on multiplier phototube response,” Rev. Sci. Instrum. 28, 525–527 (1957).
[CrossRef]

U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994).
[CrossRef]

Other (6)

“Photomultiplier tubes: principles and applications,” Publ. D-PMT-AB/USA (Philips Photonics, Slaterville, R.I., 1994).

R. W. Engstrom, “RCA photomultiplier handbook,” Publ. PMT-62, 1980 (available from Burle Industries, Inc., Lancaster, Pa., as Publ. TP-136, 1989).

J. P. Boutot, J. Nussli, D. Vallat, “Recent trends in photomultipliers for nuclear physics,” in Advances in Electronics and Electron Physics, P. W. Hawkes, ed. (Academic, New York, 1983), Vol. 60, pp. 223–305.
[CrossRef]

“Light sources, monochromators, spectrographs, detectors, and fiber optics,” Oriel Catalogue (Oriel Corp., Stratford, Conn., 1994), Vol. 2, pp. 4–7.

“Voltage divider design,” Applications Note R/P 069 (Thorn EMI Electron Tubes, Ltd., Ruislip, Middlesex, UK, 1982).

Photomultiplier Catalogue, Publ. PMC/93 (Thorn EMI Electron Tubes, Ltd., Ruislip, Middlesex, UK, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic showing the relationship between electronic, electro-optic, and optical components.

Fig. 2
Fig. 2

Divider network with a 4-dynode gate for control of 12-stage PMT’s such as the EMI 9214. Resistors R 1, R 2, and R 3 are key variables for optimizing pulsed signal linearity: Dy, dynode; A, anode; ppm, parts in 106.

Fig. 3
Fig. 3

Divider network with a focus-grid gate for control of 12-stage PMT’s such as the EMI 9214. Resistors R 1, R 2, and R 3 are key variables for optimizing pulsed signal linearity: Dy, dynode; A, anode; ppm, parts in 106.

Fig. 4
Fig. 4

Linearity limit and current amplification at a 100% gain level as a function of PMT operating voltage for the EMI 9214 PMT using a 3-dynode gate network with R 1, R 2, and R 3 set to 86, 75, and 64 kΩ, respectively.

Fig. 5
Fig. 5

Gate on-to-off signal (blocking) ratios at the 100% gain level with cw illumination as a function of PMT operating voltage for the EMI 9214 PMT measured with five different gating circuits. Without a gate pulse, the dc leakage current produced during cw LED exposure was measured with a picoammeter.

Fig. 6
Fig. 6

Signal gain for the EMI 9214 PMT as a function of gate-pulse dynode bias voltage for 2-, 3- and 4-dynode gating circuits at an operating voltage of 1300 V. Peaks of curves correspond to a 6-mA anode signal. Dynode gate-pulse voltage is referenced to the potential of the adjacent dynodes in the PC direction.

Fig. 7
Fig. 7

Signal gain for the EMI 9214 PMT as a function of gate-pulse focus-grid bias voltage for the focus-grid gating circuit at an operating voltage of 1300 V between the PC and ground. The peak of the curve corresponds to a 6-mA anode signal. Focus-grid gate-pulse voltage is referenced to a potential of 30 V more negative than the PC (-1330 V).

Fig. 8
Fig. 8

Representation of signal peak-to-peak noise as a function of gain level at an anode signal of 0.1 mA for 4-dynode and focus-grid gate modulation for the EMI 9214 PMT with pulsed LED illumination.

Fig. 9
Fig. 9

Self-referenced signal ratio (i 100%/i 50%) as a function of anode signal i 100% at a gain level of 4% for 4-dynode modulation of the EMI 9214 PMT at 1300 V.

Fig. 10
Fig. 10

Linearity limit at the 1% level as a function of signal gain for 4-dynode and focus-grid modulation of the EMI 9214 PMT.

Fig. 11
Fig. 11

Self-referenced signal ratio (i 100%/i 50%) as a function of anode signal i 100% at a gain level of 0.4% for 3-dynode modulation of the EMI 9202 PMT at 1150 V. The curve for data that were corrected for the ratio-compounding error is also shown.

Fig. 12
Fig. 12

Linearity limit at the 1% level as a function of signal gain for 3-dynode modulation of the EMI 9202 PMT at 1150 V.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S = i 100 % i 50 % ,
S c = i 100 % i 50 % c ,
i n 50 % c = i n 50 % S 1 S n - 1 c ,
S n c = i n 100 % i n 50 % S n - 1 c S 1 ,
S n c = S n S n - 1 c S 1 .
S n - 1 c = S n - 1 S n - 2 c S 1 , S n - 2 c = S n - 2 S n - 3 c S 1 , etc . ,
S n c = S n S n - 1 S 1 S n - 2 S 1 S 2 S 1 S 1 S 1 .
S n c = S n k = 1 n - 1   S k S 1 n - 1 .

Metrics