Abstract

Strong thermo-optical aberrations in flash–lamp-pumped Nd:Cr:GSGG rods were corrected to yield TEM00 output at twice the efficiency of Nd:YAG. A hemispherical resonator operating at the limit of stability was employed. As much as 3 W of average power in a Gaussian beam (M 2 ≈ 1) was generated. Unique features were zero warm-up time and the ability to vary the repetition rate without varying energy, near- and far-field profiles, or polarization purity. Thermal focusing and astigmatism were corrected with a microprocessor-controlled adaptive-optics backmirror composed of discrete elements (variable-radius mirror). A reentrant resonator coupled polarizer losses back into the laser rod and corrected depolarization.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Reed, “A flashlamp-pumped, Q-switched Cr:Nd:GSGG laser,” IEEE J. Quantum Electron. QE-21, 1625–1629 (1985).
    [CrossRef]
  2. V. Smirnov, I. Shcherbakov, “Rare earth scandium chromium garnets as active media for solid-state lasers,” IEEE J. Quantum Electron. 24, 949–959 (1988);G. Armagan, B. DiBartolo, “Mechanisms for thermal dependence of the Cr to Nd energy transfer in garnets,” IEEE J. Quantum Electron. 24, 974–978 (1988).
    [CrossRef]
  3. D. Sumida, D. Rockwell, “Pumping efficiency and emission cross-section measurements of flashlamp-pumped chromium- and neodymium-doped scandium garnets using threshold lasing,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE1627, 273–280 (1992).
    [CrossRef]
  4. W. Krupke, M. Shinn, J. Marion, J. Caird, S. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102–113 (1986).
    [CrossRef]
  5. S. Hamlin, J. Myers, T. Rexrode, “High-efficiency, flashlamp-pumped CTH:YAG lasers operated above room temperature,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pintos, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 135–138.
  6. J. Williams-Byrd, N. Barnes, “Laser performance, thermal focusing and depolarization effects in Nd:Cr:GSGG and Nd:YAG,” in Solid State Lasers, G. Dube, ed., Proc. SPIE1223, 237–246 (1990).
    [CrossRef]
  7. D. Sumida, D. Rockwell, M. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985–994 (1988).
    [CrossRef]
  8. S. Jackel, A. Kaufman, R. Lallouz, “High-repetition rate oscillators based on athermal glass rods and on birefringence correction techniques,” Opt. Eng. 33, 3008–3017 (1994).
    [CrossRef]
  9. I. Moshe, S. Jackel, R. Lallouz, “Dynamic correction of thermal focusing in Nd:YAG confocal unstable resonators using a variable-radius mirror,” Appl. Opt. (to be published).
  10. S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
    [CrossRef]
  11. R. Lavi, A. Englander, R. Lallouz, “Highly efficient low-threshold tunable, all-solid-state intracavity optical parametric oscillator in the mid IR,” Opt. Lett. 21, 800–802 (1996).
    [CrossRef] [PubMed]
  12. H. Kortz, R. Ifflander, H. Weber, “Stability and beam divergence of multimode lasers with internal variable lenses,” Appl. Opt. 20, 4124–4134 (1981).
    [CrossRef] [PubMed]
  13. S. Jackel, I. Moshe, “Method and apparatus for compensating thermal effects in laser resonators and multiple-pass amplifiers,” Israel patent application121720 (8September1997).
  14. R. H. Freeman, R. J. Freiberg, H. R. Garcia, “Adaptive laser resonator,” Opt. Lett. 2, 61–63 (1978).
    [CrossRef] [PubMed]

1997

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

1996

1994

S. Jackel, A. Kaufman, R. Lallouz, “High-repetition rate oscillators based on athermal glass rods and on birefringence correction techniques,” Opt. Eng. 33, 3008–3017 (1994).
[CrossRef]

1988

D. Sumida, D. Rockwell, M. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985–994 (1988).
[CrossRef]

V. Smirnov, I. Shcherbakov, “Rare earth scandium chromium garnets as active media for solid-state lasers,” IEEE J. Quantum Electron. 24, 949–959 (1988);G. Armagan, B. DiBartolo, “Mechanisms for thermal dependence of the Cr to Nd energy transfer in garnets,” IEEE J. Quantum Electron. 24, 974–978 (1988).
[CrossRef]

1986

1985

E. Reed, “A flashlamp-pumped, Q-switched Cr:Nd:GSGG laser,” IEEE J. Quantum Electron. QE-21, 1625–1629 (1985).
[CrossRef]

1981

1978

Barnes, N.

J. Williams-Byrd, N. Barnes, “Laser performance, thermal focusing and depolarization effects in Nd:Cr:GSGG and Nd:YAG,” in Solid State Lasers, G. Dube, ed., Proc. SPIE1223, 237–246 (1990).
[CrossRef]

Caird, J.

Englander, A.

Freeman, R. H.

Freiberg, R. J.

Garcia, H. R.

Hamlin, S.

S. Hamlin, J. Myers, T. Rexrode, “High-efficiency, flashlamp-pumped CTH:YAG lasers operated above room temperature,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pintos, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 135–138.

Ifflander, R.

Jackel, S.

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

S. Jackel, A. Kaufman, R. Lallouz, “High-repetition rate oscillators based on athermal glass rods and on birefringence correction techniques,” Opt. Eng. 33, 3008–3017 (1994).
[CrossRef]

I. Moshe, S. Jackel, R. Lallouz, “Dynamic correction of thermal focusing in Nd:YAG confocal unstable resonators using a variable-radius mirror,” Appl. Opt. (to be published).

S. Jackel, I. Moshe, “Method and apparatus for compensating thermal effects in laser resonators and multiple-pass amplifiers,” Israel patent application121720 (8September1997).

Kaufman, A.

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

S. Jackel, A. Kaufman, R. Lallouz, “High-repetition rate oscillators based on athermal glass rods and on birefringence correction techniques,” Opt. Eng. 33, 3008–3017 (1994).
[CrossRef]

Kortz, H.

Krupke, W.

Lallouz, R.

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

R. Lavi, A. Englander, R. Lallouz, “Highly efficient low-threshold tunable, all-solid-state intracavity optical parametric oscillator in the mid IR,” Opt. Lett. 21, 800–802 (1996).
[CrossRef] [PubMed]

S. Jackel, A. Kaufman, R. Lallouz, “High-repetition rate oscillators based on athermal glass rods and on birefringence correction techniques,” Opt. Eng. 33, 3008–3017 (1994).
[CrossRef]

I. Moshe, S. Jackel, R. Lallouz, “Dynamic correction of thermal focusing in Nd:YAG confocal unstable resonators using a variable-radius mirror,” Appl. Opt. (to be published).

Lavi, R.

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

R. Lavi, A. Englander, R. Lallouz, “Highly efficient low-threshold tunable, all-solid-state intracavity optical parametric oscillator in the mid IR,” Opt. Lett. 21, 800–802 (1996).
[CrossRef] [PubMed]

Mangir, M.

D. Sumida, D. Rockwell, M. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985–994 (1988).
[CrossRef]

Marion, J.

Moshe, I.

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

S. Jackel, I. Moshe, “Method and apparatus for compensating thermal effects in laser resonators and multiple-pass amplifiers,” Israel patent application121720 (8September1997).

I. Moshe, S. Jackel, R. Lallouz, “Dynamic correction of thermal focusing in Nd:YAG confocal unstable resonators using a variable-radius mirror,” Appl. Opt. (to be published).

Myers, J.

S. Hamlin, J. Myers, T. Rexrode, “High-efficiency, flashlamp-pumped CTH:YAG lasers operated above room temperature,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pintos, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 135–138.

Reed, E.

E. Reed, “A flashlamp-pumped, Q-switched Cr:Nd:GSGG laser,” IEEE J. Quantum Electron. QE-21, 1625–1629 (1985).
[CrossRef]

Rexrode, T.

S. Hamlin, J. Myers, T. Rexrode, “High-efficiency, flashlamp-pumped CTH:YAG lasers operated above room temperature,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pintos, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 135–138.

Rockwell, D.

D. Sumida, D. Rockwell, M. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985–994 (1988).
[CrossRef]

D. Sumida, D. Rockwell, “Pumping efficiency and emission cross-section measurements of flashlamp-pumped chromium- and neodymium-doped scandium garnets using threshold lasing,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE1627, 273–280 (1992).
[CrossRef]

Shcherbakov, I.

V. Smirnov, I. Shcherbakov, “Rare earth scandium chromium garnets as active media for solid-state lasers,” IEEE J. Quantum Electron. 24, 949–959 (1988);G. Armagan, B. DiBartolo, “Mechanisms for thermal dependence of the Cr to Nd energy transfer in garnets,” IEEE J. Quantum Electron. 24, 974–978 (1988).
[CrossRef]

Shinn, M.

Smirnov, V.

V. Smirnov, I. Shcherbakov, “Rare earth scandium chromium garnets as active media for solid-state lasers,” IEEE J. Quantum Electron. 24, 949–959 (1988);G. Armagan, B. DiBartolo, “Mechanisms for thermal dependence of the Cr to Nd energy transfer in garnets,” IEEE J. Quantum Electron. 24, 974–978 (1988).
[CrossRef]

Stokowski, S.

Sumida, D.

D. Sumida, D. Rockwell, M. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985–994 (1988).
[CrossRef]

D. Sumida, D. Rockwell, “Pumping efficiency and emission cross-section measurements of flashlamp-pumped chromium- and neodymium-doped scandium garnets using threshold lasing,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE1627, 273–280 (1992).
[CrossRef]

Weber, H.

Williams-Byrd, J.

J. Williams-Byrd, N. Barnes, “Laser performance, thermal focusing and depolarization effects in Nd:Cr:GSGG and Nd:YAG,” in Solid State Lasers, G. Dube, ed., Proc. SPIE1223, 237–246 (1990).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

E. Reed, “A flashlamp-pumped, Q-switched Cr:Nd:GSGG laser,” IEEE J. Quantum Electron. QE-21, 1625–1629 (1985).
[CrossRef]

V. Smirnov, I. Shcherbakov, “Rare earth scandium chromium garnets as active media for solid-state lasers,” IEEE J. Quantum Electron. 24, 949–959 (1988);G. Armagan, B. DiBartolo, “Mechanisms for thermal dependence of the Cr to Nd energy transfer in garnets,” IEEE J. Quantum Electron. 24, 974–978 (1988).
[CrossRef]

D. Sumida, D. Rockwell, M. Mangir, “Energy storage and heating measurements in flashlamp-pumped Cr:Nd:GSGG and Nd:YAG,” IEEE J. Quantum Electron. 24, 985–994 (1988).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Eng.

S. Jackel, A. Kaufman, R. Lallouz, “High-repetition rate oscillators based on athermal glass rods and on birefringence correction techniques,” Opt. Eng. 33, 3008–3017 (1994).
[CrossRef]

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High-energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

Opt. Lett.

Other

S. Jackel, I. Moshe, “Method and apparatus for compensating thermal effects in laser resonators and multiple-pass amplifiers,” Israel patent application121720 (8September1997).

I. Moshe, S. Jackel, R. Lallouz, “Dynamic correction of thermal focusing in Nd:YAG confocal unstable resonators using a variable-radius mirror,” Appl. Opt. (to be published).

D. Sumida, D. Rockwell, “Pumping efficiency and emission cross-section measurements of flashlamp-pumped chromium- and neodymium-doped scandium garnets using threshold lasing,” in Solid State Lasers III, G. J. Quarles, ed., Proc. SPIE1627, 273–280 (1992).
[CrossRef]

S. Hamlin, J. Myers, T. Rexrode, “High-efficiency, flashlamp-pumped CTH:YAG lasers operated above room temperature,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pintos, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 135–138.

J. Williams-Byrd, N. Barnes, “Laser performance, thermal focusing and depolarization effects in Nd:Cr:GSGG and Nd:YAG,” in Solid State Lasers, G. Dube, ed., Proc. SPIE1223, 237–246 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Thermal lensing in the rods and laser heads used in this study.

Fig. 2
Fig. 2

Thermally induced birefringence from GSGG and YAG measured with the same-diameter rod and the same type of laser head.

Fig. 3
Fig. 3

Schematic of the hemispherical resonator, showing all the components.

Fig. 4
Fig. 4

Performance comparison of a standard two-mirror linear cavity and a three-mirror reentrant resonator. E PFN = 9 J. The two-mirror cavity birefringence loss is the light rejected from the Q-switched polarizer after double passage through the rod.

Fig. 5
Fig. 5

Schematic of the VRM comprising a negative lens with focal length F lens separated by a distance Δ from a concave mirror with radius of curvature R mirror. Together with a laser rod that has a thermal focal length F t , the output plane is reimaged back onto itself in the hemispherical resonator.

Fig. 6
Fig. 6

Theoretical VRM effective radius of curvature and component spacing based on the experimentally measured thermal focusing of Nd:Cr:GSGG in a KK1-filtered laser head.

Fig. 7
Fig. 7

Schematic of the zoom cylindrical lens added to the one-degree-of-freedom VRM and its efficacy in correcting astigmatism; f = 1 m in the current oscillator.

Fig. 8
Fig. 8

Output energy of the hemispherical resonator with the VRM in closed-loop feedback mode and with the VRM in static mode focused for low-repetition-rate operation. With feedback, the output was TEM00 at every point.

Fig. 9
Fig. 9

Far-field beam profiles from the instant the oscillator was turned on. The numbers are the shot numbers within the sequence. E PFN = 6.2 J. a, The VRM is maintained static at its hot focus. b, The VRM focus is adjusted based on look-up tables derived earlier during a learning mode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R eff = F lens R mirror + Δ F lens - R mirror - Δ ,
R eff = F t L 1 + L 2 - L 1 L 2 L 1 - F t ,

Metrics