Abstract

An integrated-optic device, constructed by stacking two types of grating coupler in a two-story structure of waveguides, is proposed for sensing angular displacement of spindle rotation. In the first story a guided wave is diffracted by a grating coupler and becomes a sensing beam. The sensing beam is reflected by a mirror with a quarter-wave plate attached to a spindle head and is coupled back into the second story by another grating coupler. We measured the rotary displacement of the spindle by detecting variation of polarization direction of the reflected beam. A prototype device has been designed and fabricated, and the operation principle is experimentally confirmed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Hagiwara, Y. Suzuki, H. Murase, “Method of improving the resolution and accuracy of rotary encoders using a code compensation technique,” IEEE Trans. Instrum. Meas. 41, 98–101 (1992).
    [CrossRef]
  2. S. J. Ovaska, “Improving the velocity sensing resolution of pulse encoders by FIR prediction,” IEEE Trans. Instrum. Meas. 40, 657–658 (1991).
    [CrossRef]
  3. K. Fritsch, G. Beheim, “Wavelength-division multiplexed digital optical position transducer,” Opt. Lett. 11, 1–3 (1986).
    [CrossRef] [PubMed]
  4. M. Maghoo, J. Marcou, “A wavelength encoded rotary displacement sensor,” Meas. Sci. Technol. 4, 860–864 (1993).
    [CrossRef]
  5. S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” Photon. Technol. Lett. 6, 239–241 (1994).
    [CrossRef]
  6. R. Sawada, H. Tanaka, O. Ohguchi, J. Shimada, S. Hara, “Fabrication of active integrated optical micro-encoder,” in Proceedings of the 1991 IEEE Micro Electro Mechanical Systems (Institute of Electrical and Electronic Engineers, New York, 1991), pp. 233–238.
    [CrossRef]
  7. W. B. Spillman, P. L. Fuhr, “Fiber optic rotary displacement sensor with wavelength encoding,” in Optical Fiber Sensors, Vol. 2 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 244–247.
  8. T. Suhara, H. Ishimaru, S. Ura, H. Nishihara, “Integration of detection optics for magnetooptical disk pickup,” Trans. IEICE Jpn. E73, 110–115 (1990).

1994 (1)

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” Photon. Technol. Lett. 6, 239–241 (1994).
[CrossRef]

1993 (1)

M. Maghoo, J. Marcou, “A wavelength encoded rotary displacement sensor,” Meas. Sci. Technol. 4, 860–864 (1993).
[CrossRef]

1992 (1)

N. Hagiwara, Y. Suzuki, H. Murase, “Method of improving the resolution and accuracy of rotary encoders using a code compensation technique,” IEEE Trans. Instrum. Meas. 41, 98–101 (1992).
[CrossRef]

1991 (1)

S. J. Ovaska, “Improving the velocity sensing resolution of pulse encoders by FIR prediction,” IEEE Trans. Instrum. Meas. 40, 657–658 (1991).
[CrossRef]

1990 (1)

T. Suhara, H. Ishimaru, S. Ura, H. Nishihara, “Integration of detection optics for magnetooptical disk pickup,” Trans. IEICE Jpn. E73, 110–115 (1990).

1986 (1)

Beheim, G.

Fritsch, K.

Fuhr, P. L.

W. B. Spillman, P. L. Fuhr, “Fiber optic rotary displacement sensor with wavelength encoding,” in Optical Fiber Sensors, Vol. 2 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 244–247.

Hagiwara, N.

N. Hagiwara, Y. Suzuki, H. Murase, “Method of improving the resolution and accuracy of rotary encoders using a code compensation technique,” IEEE Trans. Instrum. Meas. 41, 98–101 (1992).
[CrossRef]

Hara, S.

R. Sawada, H. Tanaka, O. Ohguchi, J. Shimada, S. Hara, “Fabrication of active integrated optical micro-encoder,” in Proceedings of the 1991 IEEE Micro Electro Mechanical Systems (Institute of Electrical and Electronic Engineers, New York, 1991), pp. 233–238.
[CrossRef]

Ishimaru, H.

T. Suhara, H. Ishimaru, S. Ura, H. Nishihara, “Integration of detection optics for magnetooptical disk pickup,” Trans. IEICE Jpn. E73, 110–115 (1990).

Maghoo, M.

M. Maghoo, J. Marcou, “A wavelength encoded rotary displacement sensor,” Meas. Sci. Technol. 4, 860–864 (1993).
[CrossRef]

Marcou, J.

M. Maghoo, J. Marcou, “A wavelength encoded rotary displacement sensor,” Meas. Sci. Technol. 4, 860–864 (1993).
[CrossRef]

Murase, H.

N. Hagiwara, Y. Suzuki, H. Murase, “Method of improving the resolution and accuracy of rotary encoders using a code compensation technique,” IEEE Trans. Instrum. Meas. 41, 98–101 (1992).
[CrossRef]

Nishihara, H.

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” Photon. Technol. Lett. 6, 239–241 (1994).
[CrossRef]

T. Suhara, H. Ishimaru, S. Ura, H. Nishihara, “Integration of detection optics for magnetooptical disk pickup,” Trans. IEICE Jpn. E73, 110–115 (1990).

Ohguchi, O.

R. Sawada, H. Tanaka, O. Ohguchi, J. Shimada, S. Hara, “Fabrication of active integrated optical micro-encoder,” in Proceedings of the 1991 IEEE Micro Electro Mechanical Systems (Institute of Electrical and Electronic Engineers, New York, 1991), pp. 233–238.
[CrossRef]

Ovaska, S. J.

S. J. Ovaska, “Improving the velocity sensing resolution of pulse encoders by FIR prediction,” IEEE Trans. Instrum. Meas. 40, 657–658 (1991).
[CrossRef]

Sawada, R.

R. Sawada, H. Tanaka, O. Ohguchi, J. Shimada, S. Hara, “Fabrication of active integrated optical micro-encoder,” in Proceedings of the 1991 IEEE Micro Electro Mechanical Systems (Institute of Electrical and Electronic Engineers, New York, 1991), pp. 233–238.
[CrossRef]

Shimada, J.

R. Sawada, H. Tanaka, O. Ohguchi, J. Shimada, S. Hara, “Fabrication of active integrated optical micro-encoder,” in Proceedings of the 1991 IEEE Micro Electro Mechanical Systems (Institute of Electrical and Electronic Engineers, New York, 1991), pp. 233–238.
[CrossRef]

Shinohara, M.

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” Photon. Technol. Lett. 6, 239–241 (1994).
[CrossRef]

Spillman, W. B.

W. B. Spillman, P. L. Fuhr, “Fiber optic rotary displacement sensor with wavelength encoding,” in Optical Fiber Sensors, Vol. 2 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 244–247.

Suhara, T.

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” Photon. Technol. Lett. 6, 239–241 (1994).
[CrossRef]

T. Suhara, H. Ishimaru, S. Ura, H. Nishihara, “Integration of detection optics for magnetooptical disk pickup,” Trans. IEICE Jpn. E73, 110–115 (1990).

Suzuki, Y.

N. Hagiwara, Y. Suzuki, H. Murase, “Method of improving the resolution and accuracy of rotary encoders using a code compensation technique,” IEEE Trans. Instrum. Meas. 41, 98–101 (1992).
[CrossRef]

Tanaka, H.

R. Sawada, H. Tanaka, O. Ohguchi, J. Shimada, S. Hara, “Fabrication of active integrated optical micro-encoder,” in Proceedings of the 1991 IEEE Micro Electro Mechanical Systems (Institute of Electrical and Electronic Engineers, New York, 1991), pp. 233–238.
[CrossRef]

Ura, S.

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” Photon. Technol. Lett. 6, 239–241 (1994).
[CrossRef]

T. Suhara, H. Ishimaru, S. Ura, H. Nishihara, “Integration of detection optics for magnetooptical disk pickup,” Trans. IEICE Jpn. E73, 110–115 (1990).

IEEE Trans. Instrum. Meas. (2)

N. Hagiwara, Y. Suzuki, H. Murase, “Method of improving the resolution and accuracy of rotary encoders using a code compensation technique,” IEEE Trans. Instrum. Meas. 41, 98–101 (1992).
[CrossRef]

S. J. Ovaska, “Improving the velocity sensing resolution of pulse encoders by FIR prediction,” IEEE Trans. Instrum. Meas. 40, 657–658 (1991).
[CrossRef]

Meas. Sci. Technol. (1)

M. Maghoo, J. Marcou, “A wavelength encoded rotary displacement sensor,” Meas. Sci. Technol. 4, 860–864 (1993).
[CrossRef]

Opt. Lett. (1)

Photon. Technol. Lett. (1)

S. Ura, M. Shinohara, T. Suhara, H. Nishihara, “Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers,” Photon. Technol. Lett. 6, 239–241 (1994).
[CrossRef]

Trans. IEICE Jpn. (1)

T. Suhara, H. Ishimaru, S. Ura, H. Nishihara, “Integration of detection optics for magnetooptical disk pickup,” Trans. IEICE Jpn. E73, 110–115 (1990).

Other (2)

R. Sawada, H. Tanaka, O. Ohguchi, J. Shimada, S. Hara, “Fabrication of active integrated optical micro-encoder,” in Proceedings of the 1991 IEEE Micro Electro Mechanical Systems (Institute of Electrical and Electronic Engineers, New York, 1991), pp. 233–238.
[CrossRef]

W. B. Spillman, P. L. Fuhr, “Fiber optic rotary displacement sensor with wavelength encoding,” in Optical Fiber Sensors, Vol. 2 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 244–247.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of the proposed IO device for rotary displacement sensing.

Fig. 2
Fig. 2

Cross-sectional view of the IO device and top views of each waveguide.

Fig. 3
Fig. 3

Calculated dependences of coupling efficiency of the TDFGC on the polarization direction angle of the incident beam.

Fig. 4
Fig. 4

Measured dependences of guided-wave powers coupled by the TDFGC into the SWG on the incident polarization direction of an incident beam. Circles and squares denote the results for the guided waves with deflection angles ϕ = 22.5° and ϕ = -22.5°, respectively.

Fig. 5
Fig. 5

Measured polarization state of the output beam radiated from the CGC. Rotation angle of the transmission axis of the analyzer is scaled from the x axis in the same way as ψ.

Fig. 6
Fig. 6

Measured dependences of guided wave powers coupled back into the SWG while the quarter-wave plate was rotated.

Tables (1)

Tables Icon

Table 1 Specifications for Fabrication of an IO Device

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Φ CGC = k 0 N 1 x 2 + y + r 2 1 / 2 - k 0 y   sin   θ = 2 m π + const .
Φ TDFGC = k 0 N 2 x ± f x 2 + y + f y 2 1 / 2 - k 0 y   sin   θ = 2 m π + const .
I = I 0 cos   ψ   cos   ϕ   +   cos   θ   sin   ψ   sin   ϕ 2 ,
η = η 0 1 - exp - 2 α L y 2 ,

Metrics