Abstract

An optimal strategy for cascading phased-array deflectors is presented that allows for high-resolution random-access beam steering with continuous scan-angle control but requires a minimum number of control lines. The system is analyzed theoretically by use of a Fourier optics approach and then verified experimentally. A pair of 32-channel optical phased arrays fabricated by use of surface electrodes on lanthanum-modified lead zirconate titanate (PLZT) was sandwiched together to form a functional two-stage phased-array cascade. Experimental results from the PLZT-based two-stage deflector are presented that confirm the performance enhancements of the optimized cascading technique. A phase-staggered discrete–offset-bias protocol for controlling the cascaded system is shown to be optimal in terms of maximum diffraction efficiency and minimum number of control lines, while still providing for full analog scan control.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription