Abstract

A Fourier-transform radiometer is used to measure blackbody temperatures in the 500–1000-K range. The measurements involve collecting mid-infrared spectra at two known reference temperatures and one unknown temperature. The accuracy of the interpolation measurement technique is discussed, and the effects of the uncertainty in the temperature reference points, the voltage ratio measurement, and the wavelength accuracy are described. Temperature accuracy at the 0.5% level has been achieved; the main uncertainty component is caused by the interferometer drift. Directions to reach 100-mk accuracy levels have been identified.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Quinn, J. E. Martin, “Cryogenic radiometry, prospects for further improvements in accuracy,” Metrologia 28, 155–161 (1991).
    [CrossRef]
  2. C. C. Hoyt, P. V. Foukal, “Cryogenic radiometers and their application to metrology,” Metrologia 28, 163–167 (1991).
    [CrossRef]
  3. J. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, Chichester, UK, 1979), Chap. 1, pp. 15–18; Chap. 8, pp. 221–224.
  4. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer sounder,” Appl. Opt. 27, 3210–3218 (1988).
    [CrossRef] [PubMed]
  5. M. Yu. Sakhnovskii, B. M. Timochko, V. B. Karavanov, M. G. Kunetskii, V. A. Novoselov, E. I. Aleshko, “Fourier-radiometric method for determining the spectra, emissivity, and temperature of bodies,” Opt. Spectrosc. (USSR) 71, 468–470 (1991).
  6. E. Lindermeir, V. Tank, “The spectral emissivity of natural surfaces measured with a Fourier transform infrared spectrometer,” Measurement 14, 177–187 (1994).
    [CrossRef]
  7. S. Clausen, A. Morgenstjerne, O. Rathmann, “Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers,” Appl. Opt. 35, 5683–5691 (1996).
    [CrossRef] [PubMed]
  8. P. Haschberger, E. Lindermeir, “Spectrometric inflight measurement of aircraft exhaust emissions: first results of the June 1995 campaign,” J. Geophys. Res. 101, 25,995–26,006 (1996).
    [CrossRef]
  9. P. Gori Giorgi, “Influence of the angular response on Fourier absolute spectrometry the case of COBE-FIRAS,” Infrared Phys. Technol. 36, 749–753 (1995).
    [CrossRef]
  10. S. Clausen, L. H. Sørensen, “Measurement of single moving particle temperatures with an FT-IR spectrometer,” Appl. Spectrosc. 50, 1103–1111 (1996).
    [CrossRef]
  11. E. Lindermeir, P. Haschberger, V. Tank, H. Dietl, “Calibration of a Fourier transform spectrometer using three blackbody sources,” Appl. Opt. 31, 4527–4533 (1992).
    [CrossRef] [PubMed]
  12. H. A. Gebbie, R. A. Bohlander, R. P. Futrelle, “Properties of photons determined by interferometric spectroscopy,” Nature (London) 240, 391–394 (1972).
    [CrossRef]
  13. H. A. Gebbie, “Quantum based temperature standards,” Infrared Phys. 34, 575–577 (1993).
    [CrossRef]
  14. H. Preston-Thomas, “The International Temperature Scale of 1990 (ITS-90),” Metrologia 27, 3–10 (1990).
    [CrossRef]
  15. J. M. Palmer, “The measurement of transmission, absorption, emission, and reflection,” in Handbook of Optics, Devices, Measurements, & Properties, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 25, p. 25.7.
  16. Supplementary Information for the International Temperature Scale of 1990 (Bureau International des Poids et Mesures, Sèvres, France, 1990).
  17. K. Rahmelow, “Electronic influences on an infrared detector signal: nonlinearity and amplification,” Appl. Opt. 36, 2123–2132 (1997).
    [CrossRef] [PubMed]
  18. E. F. Zalewski, “Radiometry and photometry,” in Handbook of Optics, Devices, Measurements, & Properties, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 24, p.24.38.
  19. W. Budde, “Multidecade linearity measurements on Si photo- diodes,” Appl. Opt. 18, 1555–1558 (1979).
    [CrossRef] [PubMed]
  20. L. Coslovi, F. Righini, “Fast determination of the nonlinearity of photodetectors,” Appl. Opt. 19, 3200–3203 (1980).
    [CrossRef] [PubMed]
  21. M. Yu. Sakhnovskii, B. M. Timochko, “Nonlinearity of the photoreceiving channel of the Fourier spectrometer and the method for compensating it,” Opt. Spectrosc. 79, 647–649 (1995).
  22. D. M. MacBride, C. G. Malone, J. P. Hebb, E. G. Cravalho, “Effect of temperature variation on FT-IR spectrometer stability,” Appl. Spectrosc. 51, 43–50 (1997).
    [CrossRef]
  23. J.-M. Flaud, C. Camy-Peyret, R. A. Toth, Selected Constants: Water Vapor Line Parameters from Microwave to Medium Infrared (Pergamon, Oxford, 1981).

1997 (2)

1996 (3)

1995 (2)

P. Gori Giorgi, “Influence of the angular response on Fourier absolute spectrometry the case of COBE-FIRAS,” Infrared Phys. Technol. 36, 749–753 (1995).
[CrossRef]

M. Yu. Sakhnovskii, B. M. Timochko, “Nonlinearity of the photoreceiving channel of the Fourier spectrometer and the method for compensating it,” Opt. Spectrosc. 79, 647–649 (1995).

1994 (1)

E. Lindermeir, V. Tank, “The spectral emissivity of natural surfaces measured with a Fourier transform infrared spectrometer,” Measurement 14, 177–187 (1994).
[CrossRef]

1993 (1)

H. A. Gebbie, “Quantum based temperature standards,” Infrared Phys. 34, 575–577 (1993).
[CrossRef]

1992 (1)

1991 (3)

T. J. Quinn, J. E. Martin, “Cryogenic radiometry, prospects for further improvements in accuracy,” Metrologia 28, 155–161 (1991).
[CrossRef]

C. C. Hoyt, P. V. Foukal, “Cryogenic radiometers and their application to metrology,” Metrologia 28, 163–167 (1991).
[CrossRef]

M. Yu. Sakhnovskii, B. M. Timochko, V. B. Karavanov, M. G. Kunetskii, V. A. Novoselov, E. I. Aleshko, “Fourier-radiometric method for determining the spectra, emissivity, and temperature of bodies,” Opt. Spectrosc. (USSR) 71, 468–470 (1991).

1990 (1)

H. Preston-Thomas, “The International Temperature Scale of 1990 (ITS-90),” Metrologia 27, 3–10 (1990).
[CrossRef]

1988 (1)

1980 (1)

1979 (1)

1972 (1)

H. A. Gebbie, R. A. Bohlander, R. P. Futrelle, “Properties of photons determined by interferometric spectroscopy,” Nature (London) 240, 391–394 (1972).
[CrossRef]

Aleshko, E. I.

M. Yu. Sakhnovskii, B. M. Timochko, V. B. Karavanov, M. G. Kunetskii, V. A. Novoselov, E. I. Aleshko, “Fourier-radiometric method for determining the spectra, emissivity, and temperature of bodies,” Opt. Spectrosc. (USSR) 71, 468–470 (1991).

Bohlander, R. A.

H. A. Gebbie, R. A. Bohlander, R. P. Futrelle, “Properties of photons determined by interferometric spectroscopy,” Nature (London) 240, 391–394 (1972).
[CrossRef]

Budde, W.

Buijs, H.

Camy-Peyret, C.

J.-M. Flaud, C. Camy-Peyret, R. A. Toth, Selected Constants: Water Vapor Line Parameters from Microwave to Medium Infrared (Pergamon, Oxford, 1981).

Chamberlain, J.

J. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, Chichester, UK, 1979), Chap. 1, pp. 15–18; Chap. 8, pp. 221–224.

Clausen, S.

Coslovi, L.

Cravalho, E. G.

Dietl, H.

Flaud, J.-M.

J.-M. Flaud, C. Camy-Peyret, R. A. Toth, Selected Constants: Water Vapor Line Parameters from Microwave to Medium Infrared (Pergamon, Oxford, 1981).

Foukal, P. V.

C. C. Hoyt, P. V. Foukal, “Cryogenic radiometers and their application to metrology,” Metrologia 28, 163–167 (1991).
[CrossRef]

Futrelle, R. P.

H. A. Gebbie, R. A. Bohlander, R. P. Futrelle, “Properties of photons determined by interferometric spectroscopy,” Nature (London) 240, 391–394 (1972).
[CrossRef]

Gebbie, H. A.

H. A. Gebbie, “Quantum based temperature standards,” Infrared Phys. 34, 575–577 (1993).
[CrossRef]

H. A. Gebbie, R. A. Bohlander, R. P. Futrelle, “Properties of photons determined by interferometric spectroscopy,” Nature (London) 240, 391–394 (1972).
[CrossRef]

Giorgi, P. Gori

P. Gori Giorgi, “Influence of the angular response on Fourier absolute spectrometry the case of COBE-FIRAS,” Infrared Phys. Technol. 36, 749–753 (1995).
[CrossRef]

Haschberger, P.

P. Haschberger, E. Lindermeir, “Spectrometric inflight measurement of aircraft exhaust emissions: first results of the June 1995 campaign,” J. Geophys. Res. 101, 25,995–26,006 (1996).
[CrossRef]

E. Lindermeir, P. Haschberger, V. Tank, H. Dietl, “Calibration of a Fourier transform spectrometer using three blackbody sources,” Appl. Opt. 31, 4527–4533 (1992).
[CrossRef] [PubMed]

Hebb, J. P.

Howell, H. B.

Hoyt, C. C.

C. C. Hoyt, P. V. Foukal, “Cryogenic radiometers and their application to metrology,” Metrologia 28, 163–167 (1991).
[CrossRef]

Karavanov, V. B.

M. Yu. Sakhnovskii, B. M. Timochko, V. B. Karavanov, M. G. Kunetskii, V. A. Novoselov, E. I. Aleshko, “Fourier-radiometric method for determining the spectra, emissivity, and temperature of bodies,” Opt. Spectrosc. (USSR) 71, 468–470 (1991).

Kunetskii, M. G.

M. Yu. Sakhnovskii, B. M. Timochko, V. B. Karavanov, M. G. Kunetskii, V. A. Novoselov, E. I. Aleshko, “Fourier-radiometric method for determining the spectra, emissivity, and temperature of bodies,” Opt. Spectrosc. (USSR) 71, 468–470 (1991).

LaPorte, D. D.

Lindermeir, E.

P. Haschberger, E. Lindermeir, “Spectrometric inflight measurement of aircraft exhaust emissions: first results of the June 1995 campaign,” J. Geophys. Res. 101, 25,995–26,006 (1996).
[CrossRef]

E. Lindermeir, V. Tank, “The spectral emissivity of natural surfaces measured with a Fourier transform infrared spectrometer,” Measurement 14, 177–187 (1994).
[CrossRef]

E. Lindermeir, P. Haschberger, V. Tank, H. Dietl, “Calibration of a Fourier transform spectrometer using three blackbody sources,” Appl. Opt. 31, 4527–4533 (1992).
[CrossRef] [PubMed]

MacBride, D. M.

Malone, C. G.

Martin, J. E.

T. J. Quinn, J. E. Martin, “Cryogenic radiometry, prospects for further improvements in accuracy,” Metrologia 28, 155–161 (1991).
[CrossRef]

Morgenstjerne, A.

Novoselov, V. A.

M. Yu. Sakhnovskii, B. M. Timochko, V. B. Karavanov, M. G. Kunetskii, V. A. Novoselov, E. I. Aleshko, “Fourier-radiometric method for determining the spectra, emissivity, and temperature of bodies,” Opt. Spectrosc. (USSR) 71, 468–470 (1991).

Palmer, J. M.

J. M. Palmer, “The measurement of transmission, absorption, emission, and reflection,” in Handbook of Optics, Devices, Measurements, & Properties, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 25, p. 25.7.

Preston-Thomas, H.

H. Preston-Thomas, “The International Temperature Scale of 1990 (ITS-90),” Metrologia 27, 3–10 (1990).
[CrossRef]

Quinn, T. J.

T. J. Quinn, J. E. Martin, “Cryogenic radiometry, prospects for further improvements in accuracy,” Metrologia 28, 155–161 (1991).
[CrossRef]

Rahmelow, K.

Rathmann, O.

Revercomb, H. E.

Righini, F.

Sakhnovskii, M. Yu.

M. Yu. Sakhnovskii, B. M. Timochko, “Nonlinearity of the photoreceiving channel of the Fourier spectrometer and the method for compensating it,” Opt. Spectrosc. 79, 647–649 (1995).

M. Yu. Sakhnovskii, B. M. Timochko, V. B. Karavanov, M. G. Kunetskii, V. A. Novoselov, E. I. Aleshko, “Fourier-radiometric method for determining the spectra, emissivity, and temperature of bodies,” Opt. Spectrosc. (USSR) 71, 468–470 (1991).

Smith, W. L.

Sørensen, L. H.

Sromovsky, L. A.

Tank, V.

E. Lindermeir, V. Tank, “The spectral emissivity of natural surfaces measured with a Fourier transform infrared spectrometer,” Measurement 14, 177–187 (1994).
[CrossRef]

E. Lindermeir, P. Haschberger, V. Tank, H. Dietl, “Calibration of a Fourier transform spectrometer using three blackbody sources,” Appl. Opt. 31, 4527–4533 (1992).
[CrossRef] [PubMed]

Timochko, B. M.

M. Yu. Sakhnovskii, B. M. Timochko, “Nonlinearity of the photoreceiving channel of the Fourier spectrometer and the method for compensating it,” Opt. Spectrosc. 79, 647–649 (1995).

M. Yu. Sakhnovskii, B. M. Timochko, V. B. Karavanov, M. G. Kunetskii, V. A. Novoselov, E. I. Aleshko, “Fourier-radiometric method for determining the spectra, emissivity, and temperature of bodies,” Opt. Spectrosc. (USSR) 71, 468–470 (1991).

Toth, R. A.

J.-M. Flaud, C. Camy-Peyret, R. A. Toth, Selected Constants: Water Vapor Line Parameters from Microwave to Medium Infrared (Pergamon, Oxford, 1981).

Zalewski, E. F.

E. F. Zalewski, “Radiometry and photometry,” in Handbook of Optics, Devices, Measurements, & Properties, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 24, p.24.38.

Appl. Opt. (6)

Appl. Spectrosc. (2)

Infrared Phys. (1)

H. A. Gebbie, “Quantum based temperature standards,” Infrared Phys. 34, 575–577 (1993).
[CrossRef]

Infrared Phys. Technol. (1)

P. Gori Giorgi, “Influence of the angular response on Fourier absolute spectrometry the case of COBE-FIRAS,” Infrared Phys. Technol. 36, 749–753 (1995).
[CrossRef]

J. Geophys. Res. (1)

P. Haschberger, E. Lindermeir, “Spectrometric inflight measurement of aircraft exhaust emissions: first results of the June 1995 campaign,” J. Geophys. Res. 101, 25,995–26,006 (1996).
[CrossRef]

Measurement (1)

E. Lindermeir, V. Tank, “The spectral emissivity of natural surfaces measured with a Fourier transform infrared spectrometer,” Measurement 14, 177–187 (1994).
[CrossRef]

Metrologia (3)

T. J. Quinn, J. E. Martin, “Cryogenic radiometry, prospects for further improvements in accuracy,” Metrologia 28, 155–161 (1991).
[CrossRef]

C. C. Hoyt, P. V. Foukal, “Cryogenic radiometers and their application to metrology,” Metrologia 28, 163–167 (1991).
[CrossRef]

H. Preston-Thomas, “The International Temperature Scale of 1990 (ITS-90),” Metrologia 27, 3–10 (1990).
[CrossRef]

Nature (London) (1)

H. A. Gebbie, R. A. Bohlander, R. P. Futrelle, “Properties of photons determined by interferometric spectroscopy,” Nature (London) 240, 391–394 (1972).
[CrossRef]

Opt. Spectrosc. (1)

M. Yu. Sakhnovskii, B. M. Timochko, “Nonlinearity of the photoreceiving channel of the Fourier spectrometer and the method for compensating it,” Opt. Spectrosc. 79, 647–649 (1995).

Opt. Spectrosc. (USSR) (1)

M. Yu. Sakhnovskii, B. M. Timochko, V. B. Karavanov, M. G. Kunetskii, V. A. Novoselov, E. I. Aleshko, “Fourier-radiometric method for determining the spectra, emissivity, and temperature of bodies,” Opt. Spectrosc. (USSR) 71, 468–470 (1991).

Other (5)

J. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley, Chichester, UK, 1979), Chap. 1, pp. 15–18; Chap. 8, pp. 221–224.

J. M. Palmer, “The measurement of transmission, absorption, emission, and reflection,” in Handbook of Optics, Devices, Measurements, & Properties, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 25, p. 25.7.

Supplementary Information for the International Temperature Scale of 1990 (Bureau International des Poids et Mesures, Sèvres, France, 1990).

E. F. Zalewski, “Radiometry and photometry,” in Handbook of Optics, Devices, Measurements, & Properties, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 24, p.24.38.

J.-M. Flaud, C. Camy-Peyret, R. A. Toth, Selected Constants: Water Vapor Line Parameters from Microwave to Medium Infrared (Pergamon, Oxford, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the apparatus: (a) blackbody; (b) collimator; (c) aperture; (d) interferometer; (e) DTGS detector; (f) beam splitter; (g), (h) windows.

Fig. 2
Fig. 2

(a) Experimental and theoretical values of the ratio function r for T 1 = 492.8 K and T 2 = 1000.0 K. (b) Zoom on the 894-K curve with extremal values of the r function for a 1-K shift of measured reference temperatures (dashed curves).

Fig. 3
Fig. 3

Derived temperature versus wave number. The reference temperatures were T 1 = 492.8 K and T 2 = 1000.0 K. The calculated temperatures are indicated; measured thermocouple temperatures are shown in parentheses.

Fig. 4
Fig. 4

Uncertainty in the derived temperature from a 0.8-K uncertainty in each reference temperature. The curves were computed at the indicated temperatures for T 1 = 500 K and T 2 = 1000 K. See the text for an explanation of the values at the right of the graph.

Fig. 5
Fig. 5

Standard deviation for 256 single-scan experiments for (a) the interferogram and (b) the spectrum.

Fig. 6
Fig. 6

(a) Estimated uncertainty in the temperature caused by the signal reproducibility for the 752-K spectrum, (b) frequency range with minimal temperature uncertainty for different temperatures. The CO2 peaks near 2350 cm-1 are not shown.

Fig. 7
Fig. 7

Difference between the measured values and literature values of water absorption bands as a function of line frequency. Solid curve, best fit to the expected straight line with the equation Δν = 1.3 × 10-4 ν.

Tables (1)

Tables Icon

Table 1 Temperature-Uncertainty Components at 2700 cm-1 versus Observed Temperature

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

L Planck ν ,   T = c 1 ν 3 exp c 2 ν / T - 1 ,
L ν ,   T = ε ν ,   T L Planck ν ,   T .
V ν ,   T = R ν L ν ,   T + L bckg ν ,
r r ν ,   T ,   T 1 ,   T 2 L ν ,   T - L Planck ν ,   T 1 L Planck ν ,   T 2 - L Planck ν ,   T 1 F V x ,   T - V x ,   T 1 F V x ,   T 2 - V x ,   T 1 ,
L ν ,   T = rL 2 + 1 - r L 1 ,
T = c 2 ν ln c 1 ν 3 rL 2 + 1 - r L 1 + 1 .
Δ T = T 2 c 2 ν 1 - exp - c 2 ν T Δ L L ,
Δ L L = 1 - r L 1 rL 2 + 1 - r L 1 c 2 ν T 1 2 1 - exp - c 2 ν T 1 - 1 Δ T 1 ,
Δ L L = rL 2 rL 2 + 1 - r L 1 c 2 ν T 2 2 1 - exp - c 2 ν T 2 - 1 Δ T 2 ,
Δ L L = L 2 - L 1 L   Δ r = L 2 - L 1 1 - r L 1 + rL 2   Δ r .
Δ V V = exp - 2 π 2 ν 2 ε 2 - 1 ,
Δ r = r Δ V V - V 1 2 + V 2 - V V 2 - V 1 V - V 1   Δ V 1 2 + Δ V 2 V 2 - V 1 2 1 / 2 .
Δ r = 1 + 1 - r 2 + r 2 1 / 2 Δ V V 2 - V 1 .
Δ r = - 1 6 1 2 X 2 r + 2 r L 2 - L 1 L 2 - L 1 + R R ,
r m = ε L - ε 1 L 1 ε 2 L 2 - ε 1 L 1 .
r = ε 2 L 2 - ε 1 L 1 ε L 2 - L 1   r m + ε 1 - ε L 1 ε L 2 - L 1 .
Δ r = 1 - r m ε 1 L 1 ε L Δ ε 1 ε 1 2 + r m ε 2 L 2 ε L Δ ε 2 ε 2 2 + Δ ε ε 2 0.5 L L 2 - L 1 ,
Δ T T 2 c 2 ν 1 - exp - c 2 ν T Δ ε 1 ε 1 2 + Δ ε 2 ε 2 2 + Δ ε ε 2 1 / 2 .

Metrics