Abstract

High-power, external-cavity semiconductor lasers with narrow bandwidth and fiber-coupled output are designed and constructed. An output power of 540 mW is coupled out of a 100-μm multimode fiber with coupling efficiency of 72% when the laser is operated at 1.1 A. The emission linewidth is as narrow as 22 GHz, and the wavelength is tunable from 779.7 to 793.0 nm. Application of such lasers to remote real-time Raman sensing of materials is also demonstrated.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Philipp-Rutz, “High-radiance room-temperature GaAs lasers with controlled radiation in a single transverse mode,” IEEE J. Quantum Electron. 8, 632–641 (1972).
    [CrossRef]
  2. W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
    [CrossRef]
  3. J. R. Andrews, G. L. Schuster, “High-power and high-spatial-coherence broad-area power amplifier,” Opt. Lett. 16, 913–915 (1991).
    [CrossRef] [PubMed]
  4. J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
    [CrossRef] [PubMed]
  5. J. R. Marciante, G. P. Agrawal, “Controlling filamentation in broad-area semiconductor lasers and amplifiers,” Appl. Phys. Lett. 69, 593–595 (1996).
    [CrossRef]
  6. Y. Li, C. K. Wu, M. B. Snipes, J. G. McInerney, “Widely tunable, high power external cavity semiconductor lasers,” in Laser Diode Technology and Applications IV, D. S. Renner, ed., Proc. SPIE1634, 532–536 (1992).
    [CrossRef]
  7. P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
    [CrossRef]
  8. C. D. Allred, R. L. McCreery, “Near-infrared Raman spectroscopy of liquids and solids with a fiber-optic sampler, diode lasers, and CCD detector,” Appl. Spectrosc. 44, 1229–1231 (1990).
    [CrossRef]
  9. C. D. Newman, G. G. Bret, R. L. McCreery, “Fiber-optic sampling combined with an imaging spectrograph for routine Raman spectroscopy,” Appl. Spectrosc. 46, 262–265 (1992).
    [CrossRef]
  10. S. M. Angel, T. F. Cooney, H. T. Skinner, “Evaluation of the performance of laser sources and fiber optic probes for in-situ Raman measurements,” in Environmental Monitoring and Hazardous Waste Site Remediation, Tuan ed., Proc. Vo-Dinh, ed., Proc. SPIE2504, 40–51 (1995).
    [CrossRef]
  11. D. Mehuys, D. Evans, “High-power diode lasers tune into diverse applications,” Laser Focus World 31(5), 117–121 (1995).
  12. M. M. Carrabba, K. M. Spencer, R. D. Rauh, “Compact Raman instrumentation for process and environmental monitoring,” in Environmental Sensing and Combustion Diagnos-tics, J. J. Santoeri, ed., Proc. SPIE1434, 127–134 (1991).
    [CrossRef]
  13. B. Chase, “A new generation of Raman instrumentation,” Appl. Spectrosc. 48, 14A–19A (1994).
    [CrossRef]
  14. P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, New York, 1995), Chap. 8.
    [CrossRef]
  15. L. M. Smith, R. E. Benner, G. R. Gray, M.-W. Pan, R. D. Rallison, “Raman spectroscopy apparatus and method using external cavity laser for continuous chemical analysis of sample streams,” U.S. Patent Application1998.
  16. T. F. Cooney, H. T. Skinner, S. M. Angle, “Evaluation of external-cavity diode laser for Raman spectroscopy,” Appl. Spectrosc. 49, 1846–1851 (1995).
    [CrossRef]

1996 (2)

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef] [PubMed]

J. R. Marciante, G. P. Agrawal, “Controlling filamentation in broad-area semiconductor lasers and amplifiers,” Appl. Phys. Lett. 69, 593–595 (1996).
[CrossRef]

1995 (2)

D. Mehuys, D. Evans, “High-power diode lasers tune into diverse applications,” Laser Focus World 31(5), 117–121 (1995).

T. F. Cooney, H. T. Skinner, S. M. Angle, “Evaluation of external-cavity diode laser for Raman spectroscopy,” Appl. Spectrosc. 49, 1846–1851 (1995).
[CrossRef]

1994 (1)

1992 (2)

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

C. D. Newman, G. G. Bret, R. L. McCreery, “Fiber-optic sampling combined with an imaging spectrograph for routine Raman spectroscopy,” Appl. Spectrosc. 46, 262–265 (1992).
[CrossRef]

1991 (1)

1990 (1)

1989 (1)

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

1972 (1)

E. M. Philipp-Rutz, “High-radiance room-temperature GaAs lasers with controlled radiation in a single transverse mode,” IEEE J. Quantum Electron. 8, 632–641 (1972).
[CrossRef]

Agrawal, G. P.

J. R. Marciante, G. P. Agrawal, “Controlling filamentation in broad-area semiconductor lasers and amplifiers,” Appl. Phys. Lett. 69, 593–595 (1996).
[CrossRef]

Allred, C. D.

Andrews, J. R.

Angel, S. M.

S. M. Angel, T. F. Cooney, H. T. Skinner, “Evaluation of the performance of laser sources and fiber optic probes for in-situ Raman measurements,” in Environmental Monitoring and Hazardous Waste Site Remediation, Tuan ed., Proc. Vo-Dinh, ed., Proc. SPIE2504, 40–51 (1995).
[CrossRef]

Angle, S. M.

Balle, S.

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef] [PubMed]

Benner, R. E.

L. M. Smith, R. E. Benner, G. R. Gray, M.-W. Pan, R. D. Rallison, “Raman spectroscopy apparatus and method using external cavity laser for continuous chemical analysis of sample streams,” U.S. Patent Application1998.

Beyea, D. M.

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Bret, G. G.

Bystrom, K. J.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Carrabba, M. M.

M. M. Carrabba, K. M. Spencer, R. D. Rauh, “Compact Raman instrumentation for process and environmental monitoring,” in Environmental Sensing and Combustion Diagnos-tics, J. J. Santoeri, ed., Proc. SPIE1434, 127–134 (1991).
[CrossRef]

Chase, B.

Chelnokov, A. V.

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Cooney, T. F.

T. F. Cooney, H. T. Skinner, S. M. Angle, “Evaluation of external-cavity diode laser for Raman spectroscopy,” Appl. Spectrosc. 49, 1846–1851 (1995).
[CrossRef]

S. M. Angel, T. F. Cooney, H. T. Skinner, “Evaluation of the performance of laser sources and fiber optic probes for in-situ Raman measurements,” in Environmental Monitoring and Hazardous Waste Site Remediation, Tuan ed., Proc. Vo-Dinh, ed., Proc. SPIE2504, 40–51 (1995).
[CrossRef]

Evans, D.

D. Mehuys, D. Evans, “High-power diode lasers tune into diverse applications,” Laser Focus World 31(5), 117–121 (1995).

Gavrilovic, P.

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Gray, G. R.

L. M. Smith, R. E. Benner, G. R. Gray, M.-W. Pan, R. D. Rallison, “Raman spectroscopy apparatus and method using external cavity laser for continuous chemical analysis of sample streams,” U.S. Patent Application1998.

Li, Y.

Y. Li, C. K. Wu, M. B. Snipes, J. G. McInerney, “Widely tunable, high power external cavity semiconductor lasers,” in Laser Diode Technology and Applications IV, D. S. Renner, ed., Proc. SPIE1634, 532–536 (1992).
[CrossRef]

Marciante, J. R.

J. R. Marciante, G. P. Agrawal, “Controlling filamentation in broad-area semiconductor lasers and amplifiers,” Appl. Phys. Lett. 69, 593–595 (1996).
[CrossRef]

Martin-Regalado, J.

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef] [PubMed]

McCreery, R. L.

McInerney, J. G.

Y. Li, C. K. Wu, M. B. Snipes, J. G. McInerney, “Widely tunable, high power external cavity semiconductor lasers,” in Laser Diode Technology and Applications IV, D. S. Renner, ed., Proc. SPIE1634, 532–536 (1992).
[CrossRef]

Mehuys, D.

D. Mehuys, D. Evans, “High-power diode lasers tune into diverse applications,” Laser Focus World 31(5), 117–121 (1995).

Mooradian, A.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Newman, C. D.

O’Neill, M. S.

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Pan, M.-W.

L. M. Smith, R. E. Benner, G. R. Gray, M.-W. Pan, R. D. Rallison, “Raman spectroscopy apparatus and method using external cavity laser for continuous chemical analysis of sample streams,” U.S. Patent Application1998.

Philipp-Rutz, E. M.

E. M. Philipp-Rutz, “High-radiance room-temperature GaAs lasers with controlled radiation in a single transverse mode,” IEEE J. Quantum Electron. 8, 632–641 (1972).
[CrossRef]

Rallison, R. D.

L. M. Smith, R. E. Benner, G. R. Gray, M.-W. Pan, R. D. Rallison, “Raman spectroscopy apparatus and method using external cavity laser for continuous chemical analysis of sample streams,” U.S. Patent Application1998.

Rauh, R. D.

M. M. Carrabba, K. M. Spencer, R. D. Rauh, “Compact Raman instrumentation for process and environmental monitoring,” in Environmental Sensing and Combustion Diagnos-tics, J. J. Santoeri, ed., Proc. SPIE1434, 127–134 (1991).
[CrossRef]

San Miguel, M.

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef] [PubMed]

Schuster, G. L.

Seppala, J.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Sharfin, W. F.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Skinner, H. T.

T. F. Cooney, H. T. Skinner, S. M. Angle, “Evaluation of external-cavity diode laser for Raman spectroscopy,” Appl. Spectrosc. 49, 1846–1851 (1995).
[CrossRef]

S. M. Angel, T. F. Cooney, H. T. Skinner, “Evaluation of the performance of laser sources and fiber optic probes for in-situ Raman measurements,” in Environmental Monitoring and Hazardous Waste Site Remediation, Tuan ed., Proc. Vo-Dinh, ed., Proc. SPIE2504, 40–51 (1995).
[CrossRef]

Smith, L. M.

L. M. Smith, R. E. Benner, G. R. Gray, M.-W. Pan, R. D. Rallison, “Raman spectroscopy apparatus and method using external cavity laser for continuous chemical analysis of sample streams,” U.S. Patent Application1998.

Snipes, M. B.

Y. Li, C. K. Wu, M. B. Snipes, J. G. McInerney, “Widely tunable, high power external cavity semiconductor lasers,” in Laser Diode Technology and Applications IV, D. S. Renner, ed., Proc. SPIE1634, 532–536 (1992).
[CrossRef]

Soltz, B. A.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Spencer, K. M.

M. M. Carrabba, K. M. Spencer, R. D. Rauh, “Compact Raman instrumentation for process and environmental monitoring,” in Environmental Sensing and Combustion Diagnos-tics, J. J. Santoeri, ed., Proc. SPIE1434, 127–134 (1991).
[CrossRef]

van Tartwijk, G. H. M.

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef] [PubMed]

Vollmer, B. J.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Waters, R. G.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Wu, C. K.

Y. Li, C. K. Wu, M. B. Snipes, J. G. McInerney, “Widely tunable, high power external cavity semiconductor lasers,” in Laser Diode Technology and Applications IV, D. S. Renner, ed., Proc. SPIE1634, 532–536 (1992).
[CrossRef]

Zorabedian, P.

P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, New York, 1995), Chap. 8.
[CrossRef]

Appl. Phys. Lett. (3)

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

J. R. Marciante, G. P. Agrawal, “Controlling filamentation in broad-area semiconductor lasers and amplifiers,” Appl. Phys. Lett. 69, 593–595 (1996).
[CrossRef]

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Appl. Spectrosc. (4)

IEEE J. Quantum Electron. (1)

E. M. Philipp-Rutz, “High-radiance room-temperature GaAs lasers with controlled radiation in a single transverse mode,” IEEE J. Quantum Electron. 8, 632–641 (1972).
[CrossRef]

Laser Focus World (1)

D. Mehuys, D. Evans, “High-power diode lasers tune into diverse applications,” Laser Focus World 31(5), 117–121 (1995).

Opt. Lett. (1)

Phys. Rev. A (1)

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef] [PubMed]

Other (5)

Y. Li, C. K. Wu, M. B. Snipes, J. G. McInerney, “Widely tunable, high power external cavity semiconductor lasers,” in Laser Diode Technology and Applications IV, D. S. Renner, ed., Proc. SPIE1634, 532–536 (1992).
[CrossRef]

S. M. Angel, T. F. Cooney, H. T. Skinner, “Evaluation of the performance of laser sources and fiber optic probes for in-situ Raman measurements,” in Environmental Monitoring and Hazardous Waste Site Remediation, Tuan ed., Proc. Vo-Dinh, ed., Proc. SPIE2504, 40–51 (1995).
[CrossRef]

M. M. Carrabba, K. M. Spencer, R. D. Rauh, “Compact Raman instrumentation for process and environmental monitoring,” in Environmental Sensing and Combustion Diagnos-tics, J. J. Santoeri, ed., Proc. SPIE1434, 127–134 (1991).
[CrossRef]

P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, New York, 1995), Chap. 8.
[CrossRef]

L. M. Smith, R. E. Benner, G. R. Gray, M.-W. Pan, R. D. Rallison, “Raman spectroscopy apparatus and method using external cavity laser for continuous chemical analysis of sample streams,” U.S. Patent Application1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fiber-coupled HPECL experimental setup: LD, 1-W laser diode; L1, collimating lens; G, holographic grating; L2, cylindrical lens (f = -25.4 mm); L3, cylindrical lens (f = 33.3 mm); L4, objective lens; F, multimode fiber.

Fig. 2
Fig. 2

HPECL tuning range and threshold currents versus wavelength.

Fig. 3
Fig. 3

Typical optical spectrum from the HPECL measured with a Fabry–Perot interferometer.

Fig. 4
Fig. 4

Fiber coupling efficiency versus injection current.

Fig. 5
Fig. 5

Photograph of a volume holographic grating spectrometer with a HPECL for use with industrial Raman scattering (patent pending15).

Fig. 6
Fig. 6

Experimental Raman spectra of pure toluene from a measureing period of 14 h (integration time, 45 s for each spectrum).

Fig. 7
Fig. 7

Long-term repeatability of the Raman optical bench using a HPECL.

Metrics