Abstract

The technique of optical time-domain reflectometry is analyzed to determine the effect of an optical phase modulation on light backscattered in an optical fiber. It is shown that the spatial distribution along the fiber of an external phase modulation can be measured with a spatial resolution close to that of optical time-domain reflectometry. A distributed interferometric sensor arrangement that employs this technique is investigated experimentally, and a satisfactory interrogation of more than 1000 resolution intervals is demonstrated.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Healy, “Review of long-wave singlemode optical-fibre reflectometry techniques,” J. Lightwave Technol. 3, 876–890 (1985).
    [CrossRef]
  2. A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Appl. Opt. 20, 1060–1071 (1981).
    [CrossRef] [PubMed]
  3. R. Juskaitis, A. M. Mamedov, V. T. Potapov, S. V. Shatalin, “A distributed interferometric fiber sensor system,” Opt. Lett. 17, 1623–1625 (1992).
    [CrossRef] [PubMed]
  4. R. Juskaitis, A. M. Mamedov, V. T. Potapov, S. V. Shatalin, “Interferometry with Rayleigh backscattering in a single-mode fiber,” Opt. Lett. 19, 225–227 (1994).
    [CrossRef] [PubMed]
  5. R. Rathod, R. D. Peschtedt, D. A. Jackson, D. J. Webb, “Distributed temperature-change sensor based on Rayleigh backscattering in an optical fiber,” Opt. Lett. 19, 593–595 (1994).
    [CrossRef] [PubMed]
  6. K. Shimizu, T. Horidichi, Y. Koymoda, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurements for optical fibres and components,” IEEE J. Lightwave Technol. 10, 982–987 (1992).
    [CrossRef]
  7. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 2.

1994

1992

K. Shimizu, T. Horidichi, Y. Koymoda, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurements for optical fibres and components,” IEEE J. Lightwave Technol. 10, 982–987 (1992).
[CrossRef]

R. Juskaitis, A. M. Mamedov, V. T. Potapov, S. V. Shatalin, “A distributed interferometric fiber sensor system,” Opt. Lett. 17, 1623–1625 (1992).
[CrossRef] [PubMed]

1985

P. J. Healy, “Review of long-wave singlemode optical-fibre reflectometry techniques,” J. Lightwave Technol. 3, 876–890 (1985).
[CrossRef]

1981

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 2.

Healy, P. J.

P. J. Healy, “Review of long-wave singlemode optical-fibre reflectometry techniques,” J. Lightwave Technol. 3, 876–890 (1985).
[CrossRef]

Horidichi, T.

K. Shimizu, T. Horidichi, Y. Koymoda, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurements for optical fibres and components,” IEEE J. Lightwave Technol. 10, 982–987 (1992).
[CrossRef]

Jackson, D. A.

Juskaitis, R.

Koymoda, Y.

K. Shimizu, T. Horidichi, Y. Koymoda, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurements for optical fibres and components,” IEEE J. Lightwave Technol. 10, 982–987 (1992).
[CrossRef]

Mamedov, A. M.

Peschtedt, R. D.

Potapov, V. T.

Rathod, R.

Rogers, A. J.

Shatalin, S. V.

Shimizu, K.

K. Shimizu, T. Horidichi, Y. Koymoda, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurements for optical fibres and components,” IEEE J. Lightwave Technol. 10, 982–987 (1992).
[CrossRef]

Webb, D. J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Arrangement for OTDR.

Fig. 2
Fig. 2

(a) OTDR trace. (b) Filtered trace when periodic phase perturbations are imposed.

Fig. 3
Fig. 3

Integrated effect of a periodic longitudinal extension.

Fig. 4
Fig. 4

Effect of a localized rise in temperature: (a) temperature profile, (b) OTDR traces, (c) differential trace with the temperature perturbation.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

E ϕ ,   t = E 1 t + E 2 t exp 2 i ϕ ,
E 1 = 0 z 0   t - 2 z / υ r z exp - 2 i β z d z , E 2 = z 0 L   t - 2 z / υ r z exp - 2 i β z d z .
I ϕ ,   t = | E ϕ ,   t | 2 = I 1 t + I 2 t + 2 I 1 t I 2 t 1 / 2 cos 2 ϕ + ϕ 0 ,
ϕ 0 = arg E 2 - arg E 1   I i = | E i | 2 ,   i = 1 ,   2 .
r z r u = ρ δ z - u ,
I t = I 1 t + I 2 t .
V = 2 I 1 t I 2 t 1 / 2 I t .
V t = 1 - υ t - 2 z 0 Δ z 2 1 / 2 ,
= 1 ;   0 t Δ z υ ,   = 0 ;   | t | > Δ z υ .
| υ t - 2 z 0 | < Δ z ,
z 0 + Δ z 2 > υ t > z 0 - Δ z 2 .
I 1 I 2 = I 1 I 2 + E 1 * E 2 E 2 * E 1 .
E 1 E 2 * = 0 z 0 z 0 1   t - 2 z υ * t - 2 u υ r z r u exp - 2 i β z - u d u d z .
V = 2   I 1 t I 2 t 1 / 2 I 1 t + I 2 t ,
E 1 = υ 2   t Θ t - Θ t - 2 z 0 υ r t , E 2 = υ 2   t Θ t - 2 z 0 υ - Θ t - 2 L υ r t ,
f 1 f 2 = -   f 1 τ f 2 t - τ d τ .
I 1 t = ρ 2 υ 2   | t | 2 Θ t - Θ t - 2 z 0 υ , I 2 t = ρ 2 υ 2   | t | 2 Θ t - 2 z 0 υ - Θ t - 2 L υ .
| t | 2 = Θ t + Δ z υ - Θ t - Δ z υ ,
I 1 t = 2 ρ 2 Δ z 1 2 - υ t - 2 z 0 2 Δ z , I 1 t = 2 ρ 2 Δ z 1 2 + υ t - 2 z 0 2 Δ z .
V = 1 - υ t - 2 z 0 Δ z 2 1 / 2 .

Metrics