Abstract

Recent determinations of the temperature dependence of acetone fluorescence have permitted the application of acetone planar laser-induced fluorescence imaging, which was already popular for mapping concentration, to the measurement of temperature. With a view toward developing temperature-imaging diagnostics, we present atmospheric-pressure fluorescence and absorption results acquired with excitation at eight wavelengths across the absorption feature of acetone and at temperatures from 300 to 1000 K. Modeling of the fluorescence yield of acetone is shown to be useful in explaining both these results and the variation of acetone fluorescence with pressure and composition that was observed in several studies. The model results in conjunction with the photophysics data provide guidance for the application of temperature diagnostics over a range of conditions while also suggesting useful multiparameter imaging approaches.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
    [CrossRef]
  2. A. Lozano, S. H. Smith, M. G. Mungal, R. K. Hanson, “Concentration measurements in a transverse jet by planar laser-induced fluorescence of acetone,” AIAA J. 32, 218–221 (1993).
    [CrossRef]
  3. B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualized combusting flows,” Exp. Fluids 17, 330–336 (1994).
    [CrossRef]
  4. N. P. Tait, D. A. Greenhalgh, “2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion,” in Twenty-Fourth Symposium (International) on Combustion, Sydney, Australia (Combustion Institute, Pittsburgh, Pa., 1992) pp. 1621–1628.
    [CrossRef]
  5. N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995).
    [CrossRef]
  6. D. Wolff, H. Schluter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993).
    [CrossRef]
  7. S. H. Smith, M. G. Mungal, “Mixing, structure and scaling of the jet in crossflow,” J. Fluid Mech. 357, 83–122 (1998).
    [CrossRef]
  8. J. B. Ghandhi, P. G. Felton, “On the fluorescence behavior of ketones at high temperatures,” Exp. Fluids 21, 143–144 (1996).
    [CrossRef]
  9. F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
    [CrossRef]
  10. F. Grisch, M. C. Thurber, R. K. Hanson, “Mesure de température par fluorescence induite par laser sur la molécule d’acétone,” Rev. Sci. Tech. Defense 4, 51–60 (1997).
  11. M. C. Thurber, F. Grisch, R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997).
    [CrossRef] [PubMed]
  12. L. S. Yuen, J. E. Peters, R. P. Lucht, “Pressure dependence of laser-induced fluorescence from acetone,” Appl. Opt. 36, 3271–3277 (1997).
    [CrossRef] [PubMed]
  13. F. Ossler, M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493–502 (1997).
    [CrossRef]
  14. A. J. Hynes, E. A. Kenyon, A. J. Pounds, P. H. Wine, “Temperature dependent absorption cross-sections for acetone and n-butanone—implications for atmospheric lifetimes,” Spectrochim. Acta A 48, 1235–1242 (1992).
    [CrossRef]
  15. M. Baba, I. Hanazaki, “The S1, 1A2(n, π*) state of the acetone in a supersonic nozzle beam: methyl internal rotation,” Chem. Phys. Lett. 103, 93–97 (1983).
    [CrossRef]
  16. H. Zuckermann, Y. Haas, M. Drabbels, J. Heinze, W. L. Meerts, J. Reuss, J. v. Bladel, “Acetone, a laser-induced fluorescence study with rotational resolution at 320 nm,” Chem. Phys. 163, 193–208 (1992).
    [CrossRef]
  17. A. Lozano, “Laser-excited luminescent tracers for planar concentration measurements in gaseous jets,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1992).
  18. D. A. Hansen, E. K. C. Lee, “Radiative and nonradiative transitions in the first excited singlet state of symmetrical methyl-substituted acetones,” J. Chem. Phys. 62, 183–189 (1975).
    [CrossRef]
  19. G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapor at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
    [CrossRef]
  20. R. A. Copeland, D. R. Crosley, “Radiative, collisional and dissociative processes in triplet acetone,” Chem. Phys. Lett. 115, 362–368 (1985).
    [CrossRef]
  21. A. Costela, M. T. Crespo, J. M. Figuera, “Laser photolysis of acetone at 308 nm,” J. Photochem. 34, 165–173 (1986).
    [CrossRef]
  22. M. J. G. Borge, J. M. Figuera, J. Luque, “Study of the emission of the excited acetone vapour at intermediate pressures,” Spectrochim. Acta A 46, 617–621 (1990).
    [CrossRef]
  23. J. Heicklen, “The fluorescence and phosphorescence of biacetyl vapor and acetone vapor,” J. Am. Chem. Soc. 81, 3863–3866 (1958).
    [CrossRef]
  24. A. M. Halpern, W. R. Ware, “Excited singlet state radiative and nonradiative transition probabilities for acetone, acetone-d6, and hexafluoreacetone in the gas phase, in solution, and in the neat liquid,” J. Chem. Phys. 54, 1271–1276 (1971).
    [CrossRef]
  25. J. Ernst, K. Spindler, H. G. Wagner, “Untersuchungen zum thermischen Zerfall von Acetaldehyd und Aceton,” Ber. Bunsenges. Phys. Chem. 80, 645–650 (1976).
    [CrossRef]
  26. J. C. Hsieh, E. C. Lim, “Internal conversion in isolated aromatic molecules,” J. Chem. Phys. 61, 736–737 (1974).
    [CrossRef]
  27. K. F. Freed, “Collisional effects on electronic relaxation processes,” in Potential Energy Surfaces, K. P. Lawley, ed. (Wiley, New York, 1980), pp. 207–269.
  28. R. G. Shortridge, C. F. Rusbult, E. K. C. Lee, “Fluorescence excitation study of cyclobutanone, cyclopentanone, and cyclohexanone in the gas phase,” J. Am. Chem. Soc. 93, 1863–1867 (1970).
  29. D. J. Wilson, B. Noble, B. Lee, “Pressure dependence of fluorescence spectra,” J. Chem. Phys. 34, 1392–1396 (1961).
    [CrossRef]
  30. G. B. Porter, B. T. Connelly, “Kinetics of excited molecules. II. Dissociation processes,” J. Chem. Phys. 33, 81–85 (1960).
    [CrossRef]
  31. G. H. Kohlmaier, B. S. Rabinovitch, “Collisional transition probabilities for vibrational deactivation of chemically actived sec-butyl radicals. The rare gases,” J. Chem. Phys. 38, 1692–1714 (1963).
    [CrossRef]
  32. A. N. Strachan, R. K. Boyd, K. O. Kutschke, “Multistage deactivation in the photolysis of hexafluoroacetone,” Can. J. Chem. 42, 1345–1354 (1963).
    [CrossRef]
  33. J. Troe, “Approximate expressions for the yields of unimolecular reactions with chemical and photochemical activation,” J. Phys. Chem. 87, 1800–1804 (1983).
    [CrossRef]
  34. E. K. C. Lee, R. S. Lewis, “Photochemistry of simple aldehydes and ketones in the gas phase,” Adv. Photochem. 12, 1–95 (1980).
    [CrossRef]
  35. H. Hippler, B. Otto, J. Troe, “Collisional energy transfer of vibrationally highly excited molecules. IV. Energy dependence of 〈ΔE〉 in azulene,” Ber. Bunsenges. Phys. Chem. 93, 428–434 (1989).
    [CrossRef]
  36. T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Volume I, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand.39, (1972).
  37. R. B. Cundall, A. S. Davies, “The mechanism of the gas phase photolysis of acetone,” Proc. Soc. London Ser. A 290, 563–582 (1966).
    [CrossRef]
  38. G. M. Breuer, E. K. C. Lee, “Fluorescence decay times of cyclic ketones, acetone, and butanal in the gas phase,” J. Phys. Chem. 75, 989–990 (1970).
    [CrossRef]
  39. M. J. Rossi, J. R. Pladziewicz, J. R. Barker, “Energy-dependent energy transfer: deactivation of azulene (S0, Evib) by 17 collider gases,” J. Chem. Phys. 78, 6695–6708 (1983).
    [CrossRef]
  40. H. Hippler, J. Troe, H. J. Wendelken, “Collision deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene,” J. Chem. Phys. 78, 6709–6717 (1983).
    [CrossRef]
  41. H. Hippler, J. Troe, H. J. Wendelken, “Collisional deactivation of vibrationally highly excited polyatomic molecules. III. Direct observations for substituted cycloheptatrienes,” J. Chem. Phys. 78, 6718–6724 (1983).
    [CrossRef]
  42. W. M. Nau, J. C. Scaiano, “Oxygen quenching of excited aliphatic ketones and diketones,” J. Phys. Chem. 100, 11,360–11,367 (1996).
    [CrossRef]
  43. J. Troe, “Collisional deactivation of vibrationally highly excited polyatomic molecules. I. Theoretical analysis,” J. Chem. Phys. 77, 3485–3492 (1982).
    [CrossRef]

1998

S. H. Smith, M. G. Mungal, “Mixing, structure and scaling of the jet in crossflow,” J. Fluid Mech. 357, 83–122 (1998).
[CrossRef]

1997

F. Ossler, M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493–502 (1997).
[CrossRef]

F. Grisch, M. C. Thurber, R. K. Hanson, “Mesure de température par fluorescence induite par laser sur la molécule d’acétone,” Rev. Sci. Tech. Defense 4, 51–60 (1997).

M. C. Thurber, F. Grisch, R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997).
[CrossRef] [PubMed]

L. S. Yuen, J. E. Peters, R. P. Lucht, “Pressure dependence of laser-induced fluorescence from acetone,” Appl. Opt. 36, 3271–3277 (1997).
[CrossRef] [PubMed]

1996

J. B. Ghandhi, P. G. Felton, “On the fluorescence behavior of ketones at high temperatures,” Exp. Fluids 21, 143–144 (1996).
[CrossRef]

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

W. M. Nau, J. C. Scaiano, “Oxygen quenching of excited aliphatic ketones and diketones,” J. Phys. Chem. 100, 11,360–11,367 (1996).
[CrossRef]

1995

N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995).
[CrossRef]

1994

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualized combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

1993

A. Lozano, S. H. Smith, M. G. Mungal, R. K. Hanson, “Concentration measurements in a transverse jet by planar laser-induced fluorescence of acetone,” AIAA J. 32, 218–221 (1993).
[CrossRef]

D. Wolff, H. Schluter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993).
[CrossRef]

1992

A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

A. J. Hynes, E. A. Kenyon, A. J. Pounds, P. H. Wine, “Temperature dependent absorption cross-sections for acetone and n-butanone—implications for atmospheric lifetimes,” Spectrochim. Acta A 48, 1235–1242 (1992).
[CrossRef]

H. Zuckermann, Y. Haas, M. Drabbels, J. Heinze, W. L. Meerts, J. Reuss, J. v. Bladel, “Acetone, a laser-induced fluorescence study with rotational resolution at 320 nm,” Chem. Phys. 163, 193–208 (1992).
[CrossRef]

1990

M. J. G. Borge, J. M. Figuera, J. Luque, “Study of the emission of the excited acetone vapour at intermediate pressures,” Spectrochim. Acta A 46, 617–621 (1990).
[CrossRef]

1989

H. Hippler, B. Otto, J. Troe, “Collisional energy transfer of vibrationally highly excited molecules. IV. Energy dependence of 〈ΔE〉 in azulene,” Ber. Bunsenges. Phys. Chem. 93, 428–434 (1989).
[CrossRef]

1986

A. Costela, M. T. Crespo, J. M. Figuera, “Laser photolysis of acetone at 308 nm,” J. Photochem. 34, 165–173 (1986).
[CrossRef]

1985

R. A. Copeland, D. R. Crosley, “Radiative, collisional and dissociative processes in triplet acetone,” Chem. Phys. Lett. 115, 362–368 (1985).
[CrossRef]

1984

G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapor at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
[CrossRef]

1983

M. Baba, I. Hanazaki, “The S1, 1A2(n, π*) state of the acetone in a supersonic nozzle beam: methyl internal rotation,” Chem. Phys. Lett. 103, 93–97 (1983).
[CrossRef]

J. Troe, “Approximate expressions for the yields of unimolecular reactions with chemical and photochemical activation,” J. Phys. Chem. 87, 1800–1804 (1983).
[CrossRef]

M. J. Rossi, J. R. Pladziewicz, J. R. Barker, “Energy-dependent energy transfer: deactivation of azulene (S0, Evib) by 17 collider gases,” J. Chem. Phys. 78, 6695–6708 (1983).
[CrossRef]

H. Hippler, J. Troe, H. J. Wendelken, “Collision deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene,” J. Chem. Phys. 78, 6709–6717 (1983).
[CrossRef]

H. Hippler, J. Troe, H. J. Wendelken, “Collisional deactivation of vibrationally highly excited polyatomic molecules. III. Direct observations for substituted cycloheptatrienes,” J. Chem. Phys. 78, 6718–6724 (1983).
[CrossRef]

1982

J. Troe, “Collisional deactivation of vibrationally highly excited polyatomic molecules. I. Theoretical analysis,” J. Chem. Phys. 77, 3485–3492 (1982).
[CrossRef]

1980

E. K. C. Lee, R. S. Lewis, “Photochemistry of simple aldehydes and ketones in the gas phase,” Adv. Photochem. 12, 1–95 (1980).
[CrossRef]

1976

J. Ernst, K. Spindler, H. G. Wagner, “Untersuchungen zum thermischen Zerfall von Acetaldehyd und Aceton,” Ber. Bunsenges. Phys. Chem. 80, 645–650 (1976).
[CrossRef]

1975

D. A. Hansen, E. K. C. Lee, “Radiative and nonradiative transitions in the first excited singlet state of symmetrical methyl-substituted acetones,” J. Chem. Phys. 62, 183–189 (1975).
[CrossRef]

1974

J. C. Hsieh, E. C. Lim, “Internal conversion in isolated aromatic molecules,” J. Chem. Phys. 61, 736–737 (1974).
[CrossRef]

1971

A. M. Halpern, W. R. Ware, “Excited singlet state radiative and nonradiative transition probabilities for acetone, acetone-d6, and hexafluoreacetone in the gas phase, in solution, and in the neat liquid,” J. Chem. Phys. 54, 1271–1276 (1971).
[CrossRef]

1970

R. G. Shortridge, C. F. Rusbult, E. K. C. Lee, “Fluorescence excitation study of cyclobutanone, cyclopentanone, and cyclohexanone in the gas phase,” J. Am. Chem. Soc. 93, 1863–1867 (1970).

G. M. Breuer, E. K. C. Lee, “Fluorescence decay times of cyclic ketones, acetone, and butanal in the gas phase,” J. Phys. Chem. 75, 989–990 (1970).
[CrossRef]

1966

R. B. Cundall, A. S. Davies, “The mechanism of the gas phase photolysis of acetone,” Proc. Soc. London Ser. A 290, 563–582 (1966).
[CrossRef]

1963

G. H. Kohlmaier, B. S. Rabinovitch, “Collisional transition probabilities for vibrational deactivation of chemically actived sec-butyl radicals. The rare gases,” J. Chem. Phys. 38, 1692–1714 (1963).
[CrossRef]

A. N. Strachan, R. K. Boyd, K. O. Kutschke, “Multistage deactivation in the photolysis of hexafluoroacetone,” Can. J. Chem. 42, 1345–1354 (1963).
[CrossRef]

1961

D. J. Wilson, B. Noble, B. Lee, “Pressure dependence of fluorescence spectra,” J. Chem. Phys. 34, 1392–1396 (1961).
[CrossRef]

1960

G. B. Porter, B. T. Connelly, “Kinetics of excited molecules. II. Dissociation processes,” J. Chem. Phys. 33, 81–85 (1960).
[CrossRef]

1958

J. Heicklen, “The fluorescence and phosphorescence of biacetyl vapor and acetone vapor,” J. Am. Chem. Soc. 81, 3863–3866 (1958).
[CrossRef]

Aldén, M.

F. Ossler, M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493–502 (1997).
[CrossRef]

Andresen, P.

D. Wolff, H. Schluter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993).
[CrossRef]

Baba, M.

M. Baba, I. Hanazaki, “The S1, 1A2(n, π*) state of the acetone in a supersonic nozzle beam: methyl internal rotation,” Chem. Phys. Lett. 103, 93–97 (1983).
[CrossRef]

Barker, J. R.

M. J. Rossi, J. R. Pladziewicz, J. R. Barker, “Energy-dependent energy transfer: deactivation of azulene (S0, Evib) by 17 collider gases,” J. Chem. Phys. 78, 6695–6708 (1983).
[CrossRef]

Beushausen, V.

D. Wolff, H. Schluter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993).
[CrossRef]

Bladel, J. v.

H. Zuckermann, Y. Haas, M. Drabbels, J. Heinze, W. L. Meerts, J. Reuss, J. v. Bladel, “Acetone, a laser-induced fluorescence study with rotational resolution at 320 nm,” Chem. Phys. 163, 193–208 (1992).
[CrossRef]

Borge, M. J. G.

M. J. G. Borge, J. M. Figuera, J. Luque, “Study of the emission of the excited acetone vapour at intermediate pressures,” Spectrochim. Acta A 46, 617–621 (1990).
[CrossRef]

Boyd, R. K.

A. N. Strachan, R. K. Boyd, K. O. Kutschke, “Multistage deactivation in the photolysis of hexafluoroacetone,” Can. J. Chem. 42, 1345–1354 (1963).
[CrossRef]

Breuer, G. M.

G. M. Breuer, E. K. C. Lee, “Fluorescence decay times of cyclic ketones, acetone, and butanal in the gas phase,” J. Phys. Chem. 75, 989–990 (1970).
[CrossRef]

Clemens, N. T.

N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995).
[CrossRef]

Connelly, B. T.

G. B. Porter, B. T. Connelly, “Kinetics of excited molecules. II. Dissociation processes,” J. Chem. Phys. 33, 81–85 (1960).
[CrossRef]

Copeland, R. A.

R. A. Copeland, D. R. Crosley, “Radiative, collisional and dissociative processes in triplet acetone,” Chem. Phys. Lett. 115, 362–368 (1985).
[CrossRef]

Costela, A.

A. Costela, M. T. Crespo, J. M. Figuera, “Laser photolysis of acetone at 308 nm,” J. Photochem. 34, 165–173 (1986).
[CrossRef]

Crespo, M. T.

A. Costela, M. T. Crespo, J. M. Figuera, “Laser photolysis of acetone at 308 nm,” J. Photochem. 34, 165–173 (1986).
[CrossRef]

Crosley, D. R.

R. A. Copeland, D. R. Crosley, “Radiative, collisional and dissociative processes in triplet acetone,” Chem. Phys. Lett. 115, 362–368 (1985).
[CrossRef]

Cundall, R. B.

R. B. Cundall, A. S. Davies, “The mechanism of the gas phase photolysis of acetone,” Proc. Soc. London Ser. A 290, 563–582 (1966).
[CrossRef]

Davies, A. S.

R. B. Cundall, A. S. Davies, “The mechanism of the gas phase photolysis of acetone,” Proc. Soc. London Ser. A 290, 563–582 (1966).
[CrossRef]

Drabbels, M.

H. Zuckermann, Y. Haas, M. Drabbels, J. Heinze, W. L. Meerts, J. Reuss, J. v. Bladel, “Acetone, a laser-induced fluorescence study with rotational resolution at 320 nm,” Chem. Phys. 163, 193–208 (1992).
[CrossRef]

Ernst, J.

J. Ernst, K. Spindler, H. G. Wagner, “Untersuchungen zum thermischen Zerfall von Acetaldehyd und Aceton,” Ber. Bunsenges. Phys. Chem. 80, 645–650 (1976).
[CrossRef]

Felton, P. G.

J. B. Ghandhi, P. G. Felton, “On the fluorescence behavior of ketones at high temperatures,” Exp. Fluids 21, 143–144 (1996).
[CrossRef]

Figuera, J. M.

M. J. G. Borge, J. M. Figuera, J. Luque, “Study of the emission of the excited acetone vapour at intermediate pressures,” Spectrochim. Acta A 46, 617–621 (1990).
[CrossRef]

A. Costela, M. T. Crespo, J. M. Figuera, “Laser photolysis of acetone at 308 nm,” J. Photochem. 34, 165–173 (1986).
[CrossRef]

Freed, K. F.

K. F. Freed, “Collisional effects on electronic relaxation processes,” in Potential Energy Surfaces, K. P. Lawley, ed. (Wiley, New York, 1980), pp. 207–269.

Ghandhi, J. B.

J. B. Ghandhi, P. G. Felton, “On the fluorescence behavior of ketones at high temperatures,” Exp. Fluids 21, 143–144 (1996).
[CrossRef]

Greenblatt, G. D.

G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapor at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
[CrossRef]

Greenhalgh, D. A.

N. P. Tait, D. A. Greenhalgh, “2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion,” in Twenty-Fourth Symposium (International) on Combustion, Sydney, Australia (Combustion Institute, Pittsburgh, Pa., 1992) pp. 1621–1628.
[CrossRef]

Grisch, F.

M. C. Thurber, F. Grisch, R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997).
[CrossRef] [PubMed]

F. Grisch, M. C. Thurber, R. K. Hanson, “Mesure de température par fluorescence induite par laser sur la molécule d’acétone,” Rev. Sci. Tech. Defense 4, 51–60 (1997).

Grossmann, F.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Haas, Y.

H. Zuckermann, Y. Haas, M. Drabbels, J. Heinze, W. L. Meerts, J. Reuss, J. v. Bladel, “Acetone, a laser-induced fluorescence study with rotational resolution at 320 nm,” Chem. Phys. 163, 193–208 (1992).
[CrossRef]

G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapor at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
[CrossRef]

Halpern, A. M.

A. M. Halpern, W. R. Ware, “Excited singlet state radiative and nonradiative transition probabilities for acetone, acetone-d6, and hexafluoreacetone in the gas phase, in solution, and in the neat liquid,” J. Chem. Phys. 54, 1271–1276 (1971).
[CrossRef]

Hanazaki, I.

M. Baba, I. Hanazaki, “The S1, 1A2(n, π*) state of the acetone in a supersonic nozzle beam: methyl internal rotation,” Chem. Phys. Lett. 103, 93–97 (1983).
[CrossRef]

Hansen, D. A.

D. A. Hansen, E. K. C. Lee, “Radiative and nonradiative transitions in the first excited singlet state of symmetrical methyl-substituted acetones,” J. Chem. Phys. 62, 183–189 (1975).
[CrossRef]

Hanson, R. K.

M. C. Thurber, F. Grisch, R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997).
[CrossRef] [PubMed]

F. Grisch, M. C. Thurber, R. K. Hanson, “Mesure de température par fluorescence induite par laser sur la molécule d’acétone,” Rev. Sci. Tech. Defense 4, 51–60 (1997).

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualized combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

A. Lozano, S. H. Smith, M. G. Mungal, R. K. Hanson, “Concentration measurements in a transverse jet by planar laser-induced fluorescence of acetone,” AIAA J. 32, 218–221 (1993).
[CrossRef]

A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

Heicklen, J.

J. Heicklen, “The fluorescence and phosphorescence of biacetyl vapor and acetone vapor,” J. Am. Chem. Soc. 81, 3863–3866 (1958).
[CrossRef]

Heinze, J.

H. Zuckermann, Y. Haas, M. Drabbels, J. Heinze, W. L. Meerts, J. Reuss, J. v. Bladel, “Acetone, a laser-induced fluorescence study with rotational resolution at 320 nm,” Chem. Phys. 163, 193–208 (1992).
[CrossRef]

Hippler, H.

H. Hippler, B. Otto, J. Troe, “Collisional energy transfer of vibrationally highly excited molecules. IV. Energy dependence of 〈ΔE〉 in azulene,” Ber. Bunsenges. Phys. Chem. 93, 428–434 (1989).
[CrossRef]

H. Hippler, J. Troe, H. J. Wendelken, “Collision deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene,” J. Chem. Phys. 78, 6709–6717 (1983).
[CrossRef]

H. Hippler, J. Troe, H. J. Wendelken, “Collisional deactivation of vibrationally highly excited polyatomic molecules. III. Direct observations for substituted cycloheptatrienes,” J. Chem. Phys. 78, 6718–6724 (1983).
[CrossRef]

Hsieh, J. C.

J. C. Hsieh, E. C. Lim, “Internal conversion in isolated aromatic molecules,” J. Chem. Phys. 61, 736–737 (1974).
[CrossRef]

Hynes, A. J.

A. J. Hynes, E. A. Kenyon, A. J. Pounds, P. H. Wine, “Temperature dependent absorption cross-sections for acetone and n-butanone—implications for atmospheric lifetimes,” Spectrochim. Acta A 48, 1235–1242 (1992).
[CrossRef]

Kenyon, E. A.

A. J. Hynes, E. A. Kenyon, A. J. Pounds, P. H. Wine, “Temperature dependent absorption cross-sections for acetone and n-butanone—implications for atmospheric lifetimes,” Spectrochim. Acta A 48, 1235–1242 (1992).
[CrossRef]

Kohlmaier, G. H.

G. H. Kohlmaier, B. S. Rabinovitch, “Collisional transition probabilities for vibrational deactivation of chemically actived sec-butyl radicals. The rare gases,” J. Chem. Phys. 38, 1692–1714 (1963).
[CrossRef]

Kutschke, K. O.

A. N. Strachan, R. K. Boyd, K. O. Kutschke, “Multistage deactivation in the photolysis of hexafluoroacetone,” Can. J. Chem. 42, 1345–1354 (1963).
[CrossRef]

Lee, B.

D. J. Wilson, B. Noble, B. Lee, “Pressure dependence of fluorescence spectra,” J. Chem. Phys. 34, 1392–1396 (1961).
[CrossRef]

Lee, E. K. C.

E. K. C. Lee, R. S. Lewis, “Photochemistry of simple aldehydes and ketones in the gas phase,” Adv. Photochem. 12, 1–95 (1980).
[CrossRef]

D. A. Hansen, E. K. C. Lee, “Radiative and nonradiative transitions in the first excited singlet state of symmetrical methyl-substituted acetones,” J. Chem. Phys. 62, 183–189 (1975).
[CrossRef]

R. G. Shortridge, C. F. Rusbult, E. K. C. Lee, “Fluorescence excitation study of cyclobutanone, cyclopentanone, and cyclohexanone in the gas phase,” J. Am. Chem. Soc. 93, 1863–1867 (1970).

G. M. Breuer, E. K. C. Lee, “Fluorescence decay times of cyclic ketones, acetone, and butanal in the gas phase,” J. Phys. Chem. 75, 989–990 (1970).
[CrossRef]

Lewis, R. S.

E. K. C. Lee, R. S. Lewis, “Photochemistry of simple aldehydes and ketones in the gas phase,” Adv. Photochem. 12, 1–95 (1980).
[CrossRef]

Lim, E. C.

J. C. Hsieh, E. C. Lim, “Internal conversion in isolated aromatic molecules,” J. Chem. Phys. 61, 736–737 (1974).
[CrossRef]

Lozano, A.

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualized combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

A. Lozano, S. H. Smith, M. G. Mungal, R. K. Hanson, “Concentration measurements in a transverse jet by planar laser-induced fluorescence of acetone,” AIAA J. 32, 218–221 (1993).
[CrossRef]

A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

A. Lozano, “Laser-excited luminescent tracers for planar concentration measurements in gaseous jets,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1992).

Lucht, R. P.

Luque, J.

M. J. G. Borge, J. M. Figuera, J. Luque, “Study of the emission of the excited acetone vapour at intermediate pressures,” Spectrochim. Acta A 46, 617–621 (1990).
[CrossRef]

Meerts, W. L.

H. Zuckermann, Y. Haas, M. Drabbels, J. Heinze, W. L. Meerts, J. Reuss, J. v. Bladel, “Acetone, a laser-induced fluorescence study with rotational resolution at 320 nm,” Chem. Phys. 163, 193–208 (1992).
[CrossRef]

Miller, M. F.

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualized combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

Monkhouse, P. B.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Mungal, M. G.

S. H. Smith, M. G. Mungal, “Mixing, structure and scaling of the jet in crossflow,” J. Fluid Mech. 357, 83–122 (1998).
[CrossRef]

A. Lozano, S. H. Smith, M. G. Mungal, R. K. Hanson, “Concentration measurements in a transverse jet by planar laser-induced fluorescence of acetone,” AIAA J. 32, 218–221 (1993).
[CrossRef]

Nau, W. M.

W. M. Nau, J. C. Scaiano, “Oxygen quenching of excited aliphatic ketones and diketones,” J. Phys. Chem. 100, 11,360–11,367 (1996).
[CrossRef]

Noble, B.

D. J. Wilson, B. Noble, B. Lee, “Pressure dependence of fluorescence spectra,” J. Chem. Phys. 34, 1392–1396 (1961).
[CrossRef]

Ossler, F.

F. Ossler, M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493–502 (1997).
[CrossRef]

Otto, B.

H. Hippler, B. Otto, J. Troe, “Collisional energy transfer of vibrationally highly excited molecules. IV. Energy dependence of 〈ΔE〉 in azulene,” Ber. Bunsenges. Phys. Chem. 93, 428–434 (1989).
[CrossRef]

Paul, P. H.

N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995).
[CrossRef]

Peters, J. E.

Pladziewicz, J. R.

M. J. Rossi, J. R. Pladziewicz, J. R. Barker, “Energy-dependent energy transfer: deactivation of azulene (S0, Evib) by 17 collider gases,” J. Chem. Phys. 78, 6695–6708 (1983).
[CrossRef]

Porter, G. B.

G. B. Porter, B. T. Connelly, “Kinetics of excited molecules. II. Dissociation processes,” J. Chem. Phys. 33, 81–85 (1960).
[CrossRef]

Pounds, A. J.

A. J. Hynes, E. A. Kenyon, A. J. Pounds, P. H. Wine, “Temperature dependent absorption cross-sections for acetone and n-butanone—implications for atmospheric lifetimes,” Spectrochim. Acta A 48, 1235–1242 (1992).
[CrossRef]

Rabinovitch, B. S.

G. H. Kohlmaier, B. S. Rabinovitch, “Collisional transition probabilities for vibrational deactivation of chemically actived sec-butyl radicals. The rare gases,” J. Chem. Phys. 38, 1692–1714 (1963).
[CrossRef]

Reuss, J.

H. Zuckermann, Y. Haas, M. Drabbels, J. Heinze, W. L. Meerts, J. Reuss, J. v. Bladel, “Acetone, a laser-induced fluorescence study with rotational resolution at 320 nm,” Chem. Phys. 163, 193–208 (1992).
[CrossRef]

Ridder, M.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Rossi, M. J.

M. J. Rossi, J. R. Pladziewicz, J. R. Barker, “Energy-dependent energy transfer: deactivation of azulene (S0, Evib) by 17 collider gases,” J. Chem. Phys. 78, 6695–6708 (1983).
[CrossRef]

Ruhman, S.

G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapor at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
[CrossRef]

Rusbult, C. F.

R. G. Shortridge, C. F. Rusbult, E. K. C. Lee, “Fluorescence excitation study of cyclobutanone, cyclopentanone, and cyclohexanone in the gas phase,” J. Am. Chem. Soc. 93, 1863–1867 (1970).

Scaiano, J. C.

W. M. Nau, J. C. Scaiano, “Oxygen quenching of excited aliphatic ketones and diketones,” J. Phys. Chem. 100, 11,360–11,367 (1996).
[CrossRef]

Schluter, H.

D. Wolff, H. Schluter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993).
[CrossRef]

Shimanouchi, T.

T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Volume I, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand.39, (1972).

Shortridge, R. G.

R. G. Shortridge, C. F. Rusbult, E. K. C. Lee, “Fluorescence excitation study of cyclobutanone, cyclopentanone, and cyclohexanone in the gas phase,” J. Am. Chem. Soc. 93, 1863–1867 (1970).

Sick, V.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Smith, S. H.

S. H. Smith, M. G. Mungal, “Mixing, structure and scaling of the jet in crossflow,” J. Fluid Mech. 357, 83–122 (1998).
[CrossRef]

A. Lozano, S. H. Smith, M. G. Mungal, R. K. Hanson, “Concentration measurements in a transverse jet by planar laser-induced fluorescence of acetone,” AIAA J. 32, 218–221 (1993).
[CrossRef]

Spindler, K.

J. Ernst, K. Spindler, H. G. Wagner, “Untersuchungen zum thermischen Zerfall von Acetaldehyd und Aceton,” Ber. Bunsenges. Phys. Chem. 80, 645–650 (1976).
[CrossRef]

Strachan, A. N.

A. N. Strachan, R. K. Boyd, K. O. Kutschke, “Multistage deactivation in the photolysis of hexafluoroacetone,” Can. J. Chem. 42, 1345–1354 (1963).
[CrossRef]

Tait, N. P.

N. P. Tait, D. A. Greenhalgh, “2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion,” in Twenty-Fourth Symposium (International) on Combustion, Sydney, Australia (Combustion Institute, Pittsburgh, Pa., 1992) pp. 1621–1628.
[CrossRef]

Thurber, M. C.

M. C. Thurber, F. Grisch, R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997).
[CrossRef] [PubMed]

F. Grisch, M. C. Thurber, R. K. Hanson, “Mesure de température par fluorescence induite par laser sur la molécule d’acétone,” Rev. Sci. Tech. Defense 4, 51–60 (1997).

Troe, J.

H. Hippler, B. Otto, J. Troe, “Collisional energy transfer of vibrationally highly excited molecules. IV. Energy dependence of 〈ΔE〉 in azulene,” Ber. Bunsenges. Phys. Chem. 93, 428–434 (1989).
[CrossRef]

H. Hippler, J. Troe, H. J. Wendelken, “Collisional deactivation of vibrationally highly excited polyatomic molecules. III. Direct observations for substituted cycloheptatrienes,” J. Chem. Phys. 78, 6718–6724 (1983).
[CrossRef]

J. Troe, “Approximate expressions for the yields of unimolecular reactions with chemical and photochemical activation,” J. Phys. Chem. 87, 1800–1804 (1983).
[CrossRef]

H. Hippler, J. Troe, H. J. Wendelken, “Collision deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene,” J. Chem. Phys. 78, 6709–6717 (1983).
[CrossRef]

J. Troe, “Collisional deactivation of vibrationally highly excited polyatomic molecules. I. Theoretical analysis,” J. Chem. Phys. 77, 3485–3492 (1982).
[CrossRef]

Wagner, H. G.

J. Ernst, K. Spindler, H. G. Wagner, “Untersuchungen zum thermischen Zerfall von Acetaldehyd und Aceton,” Ber. Bunsenges. Phys. Chem. 80, 645–650 (1976).
[CrossRef]

Ware, W. R.

A. M. Halpern, W. R. Ware, “Excited singlet state radiative and nonradiative transition probabilities for acetone, acetone-d6, and hexafluoreacetone in the gas phase, in solution, and in the neat liquid,” J. Chem. Phys. 54, 1271–1276 (1971).
[CrossRef]

Wendelken, H. J.

H. Hippler, J. Troe, H. J. Wendelken, “Collisional deactivation of vibrationally highly excited polyatomic molecules. III. Direct observations for substituted cycloheptatrienes,” J. Chem. Phys. 78, 6718–6724 (1983).
[CrossRef]

H. Hippler, J. Troe, H. J. Wendelken, “Collision deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene,” J. Chem. Phys. 78, 6709–6717 (1983).
[CrossRef]

Wilson, D. J.

D. J. Wilson, B. Noble, B. Lee, “Pressure dependence of fluorescence spectra,” J. Chem. Phys. 34, 1392–1396 (1961).
[CrossRef]

Wine, P. H.

A. J. Hynes, E. A. Kenyon, A. J. Pounds, P. H. Wine, “Temperature dependent absorption cross-sections for acetone and n-butanone—implications for atmospheric lifetimes,” Spectrochim. Acta A 48, 1235–1242 (1992).
[CrossRef]

Wolff, D.

D. Wolff, H. Schluter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993).
[CrossRef]

Wolfrum, J.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Yip, B.

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualized combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

Yuen, L. S.

Zuckermann, H.

H. Zuckermann, Y. Haas, M. Drabbels, J. Heinze, W. L. Meerts, J. Reuss, J. v. Bladel, “Acetone, a laser-induced fluorescence study with rotational resolution at 320 nm,” Chem. Phys. 163, 193–208 (1992).
[CrossRef]

Adv. Photochem.

E. K. C. Lee, R. S. Lewis, “Photochemistry of simple aldehydes and ketones in the gas phase,” Adv. Photochem. 12, 1–95 (1980).
[CrossRef]

AIAA J.

A. Lozano, S. H. Smith, M. G. Mungal, R. K. Hanson, “Concentration measurements in a transverse jet by planar laser-induced fluorescence of acetone,” AIAA J. 32, 218–221 (1993).
[CrossRef]

Appl. Opt.

Appl. Phys. B

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

F. Ossler, M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493–502 (1997).
[CrossRef]

Ber. Bunsenges. Phys. Chem.

H. Hippler, B. Otto, J. Troe, “Collisional energy transfer of vibrationally highly excited molecules. IV. Energy dependence of 〈ΔE〉 in azulene,” Ber. Bunsenges. Phys. Chem. 93, 428–434 (1989).
[CrossRef]

J. Ernst, K. Spindler, H. G. Wagner, “Untersuchungen zum thermischen Zerfall von Acetaldehyd und Aceton,” Ber. Bunsenges. Phys. Chem. 80, 645–650 (1976).
[CrossRef]

D. Wolff, H. Schluter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993).
[CrossRef]

Can. J. Chem.

A. N. Strachan, R. K. Boyd, K. O. Kutschke, “Multistage deactivation in the photolysis of hexafluoroacetone,” Can. J. Chem. 42, 1345–1354 (1963).
[CrossRef]

Chem. Phys.

H. Zuckermann, Y. Haas, M. Drabbels, J. Heinze, W. L. Meerts, J. Reuss, J. v. Bladel, “Acetone, a laser-induced fluorescence study with rotational resolution at 320 nm,” Chem. Phys. 163, 193–208 (1992).
[CrossRef]

Chem. Phys. Lett.

G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapor at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
[CrossRef]

R. A. Copeland, D. R. Crosley, “Radiative, collisional and dissociative processes in triplet acetone,” Chem. Phys. Lett. 115, 362–368 (1985).
[CrossRef]

M. Baba, I. Hanazaki, “The S1, 1A2(n, π*) state of the acetone in a supersonic nozzle beam: methyl internal rotation,” Chem. Phys. Lett. 103, 93–97 (1983).
[CrossRef]

Combust. Flame

N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995).
[CrossRef]

Exp. Fluids

J. B. Ghandhi, P. G. Felton, “On the fluorescence behavior of ketones at high temperatures,” Exp. Fluids 21, 143–144 (1996).
[CrossRef]

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualized combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

J. Am. Chem. Soc.

J. Heicklen, “The fluorescence and phosphorescence of biacetyl vapor and acetone vapor,” J. Am. Chem. Soc. 81, 3863–3866 (1958).
[CrossRef]

R. G. Shortridge, C. F. Rusbult, E. K. C. Lee, “Fluorescence excitation study of cyclobutanone, cyclopentanone, and cyclohexanone in the gas phase,” J. Am. Chem. Soc. 93, 1863–1867 (1970).

J. Chem. Phys.

D. J. Wilson, B. Noble, B. Lee, “Pressure dependence of fluorescence spectra,” J. Chem. Phys. 34, 1392–1396 (1961).
[CrossRef]

G. B. Porter, B. T. Connelly, “Kinetics of excited molecules. II. Dissociation processes,” J. Chem. Phys. 33, 81–85 (1960).
[CrossRef]

G. H. Kohlmaier, B. S. Rabinovitch, “Collisional transition probabilities for vibrational deactivation of chemically actived sec-butyl radicals. The rare gases,” J. Chem. Phys. 38, 1692–1714 (1963).
[CrossRef]

A. M. Halpern, W. R. Ware, “Excited singlet state radiative and nonradiative transition probabilities for acetone, acetone-d6, and hexafluoreacetone in the gas phase, in solution, and in the neat liquid,” J. Chem. Phys. 54, 1271–1276 (1971).
[CrossRef]

D. A. Hansen, E. K. C. Lee, “Radiative and nonradiative transitions in the first excited singlet state of symmetrical methyl-substituted acetones,” J. Chem. Phys. 62, 183–189 (1975).
[CrossRef]

J. Troe, “Collisional deactivation of vibrationally highly excited polyatomic molecules. I. Theoretical analysis,” J. Chem. Phys. 77, 3485–3492 (1982).
[CrossRef]

M. J. Rossi, J. R. Pladziewicz, J. R. Barker, “Energy-dependent energy transfer: deactivation of azulene (S0, Evib) by 17 collider gases,” J. Chem. Phys. 78, 6695–6708 (1983).
[CrossRef]

H. Hippler, J. Troe, H. J. Wendelken, “Collision deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene,” J. Chem. Phys. 78, 6709–6717 (1983).
[CrossRef]

H. Hippler, J. Troe, H. J. Wendelken, “Collisional deactivation of vibrationally highly excited polyatomic molecules. III. Direct observations for substituted cycloheptatrienes,” J. Chem. Phys. 78, 6718–6724 (1983).
[CrossRef]

J. C. Hsieh, E. C. Lim, “Internal conversion in isolated aromatic molecules,” J. Chem. Phys. 61, 736–737 (1974).
[CrossRef]

J. Fluid Mech.

S. H. Smith, M. G. Mungal, “Mixing, structure and scaling of the jet in crossflow,” J. Fluid Mech. 357, 83–122 (1998).
[CrossRef]

J. Photochem.

A. Costela, M. T. Crespo, J. M. Figuera, “Laser photolysis of acetone at 308 nm,” J. Photochem. 34, 165–173 (1986).
[CrossRef]

J. Phys. Chem.

J. Troe, “Approximate expressions for the yields of unimolecular reactions with chemical and photochemical activation,” J. Phys. Chem. 87, 1800–1804 (1983).
[CrossRef]

G. M. Breuer, E. K. C. Lee, “Fluorescence decay times of cyclic ketones, acetone, and butanal in the gas phase,” J. Phys. Chem. 75, 989–990 (1970).
[CrossRef]

W. M. Nau, J. C. Scaiano, “Oxygen quenching of excited aliphatic ketones and diketones,” J. Phys. Chem. 100, 11,360–11,367 (1996).
[CrossRef]

Opt. Lett.

Proc. Soc. London Ser. A

R. B. Cundall, A. S. Davies, “The mechanism of the gas phase photolysis of acetone,” Proc. Soc. London Ser. A 290, 563–582 (1966).
[CrossRef]

Rev. Sci. Tech. Defense

F. Grisch, M. C. Thurber, R. K. Hanson, “Mesure de température par fluorescence induite par laser sur la molécule d’acétone,” Rev. Sci. Tech. Defense 4, 51–60 (1997).

Spectrochim. Acta A

M. J. G. Borge, J. M. Figuera, J. Luque, “Study of the emission of the excited acetone vapour at intermediate pressures,” Spectrochim. Acta A 46, 617–621 (1990).
[CrossRef]

A. J. Hynes, E. A. Kenyon, A. J. Pounds, P. H. Wine, “Temperature dependent absorption cross-sections for acetone and n-butanone—implications for atmospheric lifetimes,” Spectrochim. Acta A 48, 1235–1242 (1992).
[CrossRef]

Other

A. Lozano, “Laser-excited luminescent tracers for planar concentration measurements in gaseous jets,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1992).

T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Volume I, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand.39, (1972).

K. F. Freed, “Collisional effects on electronic relaxation processes,” in Potential Energy Surfaces, K. P. Lawley, ed. (Wiley, New York, 1980), pp. 207–269.

N. P. Tait, D. A. Greenhalgh, “2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion,” in Twenty-Fourth Symposium (International) on Combustion, Sydney, Australia (Combustion Institute, Pittsburgh, Pa., 1992) pp. 1621–1628.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Acetone PLIF temperature image obtained with 266-nm excitation and a flow field uniformly composed of 20% acetone in air. Instabilities are evident in this heated jet (Re = 100) in weak crossflow. The imaged region is 22 mm on a side.

Fig. 2
Fig. 2

Experimental schematic for acetone fluorescence and absorption temperature-dependence experiments. An acetone–nitrogen mixture is passed through a heated, optically accessible flow cell. Laser excitation is provided by a KrF excimer laser (248 nm), a frequency-quadrupled Nd:YAG laser (266 nm), and a Nd:YAG-pumped dye laser (276–320 nm).

Fig. 3
Fig. 3

Fluorescence per molecule per unit laser fluence at atmospheric pressure, normalized to the room-temperature value for each wavelength and plotted as a function of temperature for all eight excitation wavelengths. For this figure and subsequent figures in this section, symbols represent experimental data points and lines are fits to the data. Error is estimated to be ±2% at low temperatures and from ±3 to ±4% at higher temperatures.

Fig. 4
Fig. 4

The absorption spectral profile of acetone is seen both to shift to longer wavelengths and to increase in magnitude as temperature is increased. Error in the absorption measurements is typically ±2–±3%. Room-temperature data from this study match the results of Hynes et al.14

Fig. 5
Fig. 5

The normalized absorption cross section of acetone shows a steady rise with temperature, with the effect increasing with wavelength. Eight excitation wavelengths are plotted.

Fig. 6
Fig. 6

Relative temperature dependence of the fluorescence yield, obtained by division of the normalized fluorescence signal by the normalized absorption cross section at each temperature.

Fig. 7
Fig. 7

Fluorescence per unit laser energy per unit mole fraction at atmospheric pressure, normalized to the room-temperature value. At constant pressure and seeding fraction, temperature can be inferred from a fluorescence measurement with this plot. For clarity, only five excitation wavelengths are considered.

Fig. 8
Fig. 8

Fluorescence signal ratios (P = 1 atm) produced by five different wavelength combinations, plotted as a function of temperature. Each data point represents the ratio of the longer-wavelength fluorescence signal at a given temperature to the shorter-wavelength signal at the same temperature.

Fig. 9
Fig. 9

Simplified model of acetone’s photophysical behavior with multistep decay of the excited singlet.

Fig. 10
Fig. 10

Optimized model expression for k NR as a function of average vibrational energy (solid curve) compared with existing data. Two slightly off-optimum model cases are also plotted (dashed and dotted curves). Low-pressure data on fluorescence lifetime (Breuer and Lee,38 Ossler and Aldén13) and fluorescence yield (Shortridge et al.28) have been converted into data for k NR(E), the electronic relaxation rate as a function of vibrational energy, under the assumption of a constant fluorescence rate k f . Biexponential behavior of k NR was assumed in the model (see Table 1).

Fig. 11
Fig. 11

Fluorescence-yield pressure-dependence data of Yuen et al.12 and Ossler and Aldén13 (converted from fluorescence lifetime data under the assumption of a constant fluorescence rate k f ) compared with the optimized model results and with slightly off-optimum model results (dotted and dashed curves).

Fig. 12
Fig. 12

Variation of the fluorescence yield with temperature and excitation wavelength plotted for the optimized model parameters on an absolute basis, with the Heicklen result at 40 °C and 313 nm as a reference. For each wavelength the temperature-dependent data reported here are compared against the model, with a constant factor (determined by best fit) used to normalize the experimental data, which carry only relative information, at each wavelength.

Fig. 13
Fig. 13

Variation of fluorescence yield with temperature examined more closely for 266-nm excitation. The optimized model results and the slightly off-optimum results (dashed and dotted curves) are plotted on an absolute basis. Our relative fluorescence yield data are multiplied by a constant to provide the best fit to the model. Ossler–Aldén data are converted to fluorescence yield based on the value of fluorescence rate found by Hansen and Lee.18

Fig. 14
Fig. 14

Model-generated curves of fluorescence per unit mole fraction per unit laser fluence, plotted for three wavelengths and four different pressures. Each curve is normalized to unity at room temperature.

Fig. 15
Fig. 15

Estimated single-wavelength temperature uncertainties for a hypothetical, shot-noise-limited experiment (see text). Families of curves, with pressure varying from 0.5 to 5 atm in 0.5-atm increments, are plotted for 248- and 266-nm excitation.

Fig. 16
Fig. 16

Normalized, model-generated fluorescence ratio curves (as in Fig. 8), plotted for two wavelength pairs and four different pressures.

Fig. 17
Fig. 17

Dual-wavelength temperature uncertainties plotted for hypothetical, shot-noise-limited experimental conditions (see text), with constant acetone partial pressure. Families of curves, with pressure varying from 0.5 to 5 atm in 0.5-atm increments, are plotted for the 308–248-nm and 308–266-nm wavelength pairs.

Fig. 18
Fig. 18

Error in measured temperature with the dual-wavelength strategy that is due to a differential change in pressure. Families of curves, with pressure varying from 0.5 to 5 atm in 0.5-atm increments, are plotted for the 308–248-nm and 308–266-nm wavelength pairs.

Tables (1)

Tables Icon

Table 1 Model Parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S f λ ,   T = η opt E hc / λ d V c n abs T σ λ ,   T ϕ λ ,   T ,
S f * λ ,   T     σ λ ,   T ϕ λ ,   T ,
S f + λ ,   T     p / T   σ λ ,   T ϕ λ ,   T ,
ϕ = k f k f + k coll + k NR , 1 + i = 2 N - 1 k f k f + k coll + k NR ,   i j = 1 i - 1 k coll k f + k coll + k NR , j + k f k f + k NR , N j = 1 N - 1 k coll k f + k coll + k NR , j .

Metrics