Abstract

Stable single-longitudinal-mode operation of a tunable gain-switched Cr:forsterite oscillator–amplifier system is reported. A novel coupled-cavity oscillator configuration provides a low-threshold fluence of 0.3 J cm-2, making the system attractive for laser media with low gain or high parasitic loss. Nearly transform-limited pulses with instrument-limited bandwidths of 150 MHz have been obtained across a 100-nm wavelength range, limited by the cavity optics. A range of forsterite crystals with Cr4+ concentration in the 3–21 × 1018-cm-3 range has been used for investigation of amplifier performance in single- and double-pass configurations.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
    [CrossRef]
  2. H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, “Chromium-doped forsterite laser pumped with 1.06 μm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
    [CrossRef]
  3. N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
    [CrossRef]
  4. I. T. McKinnie, A. M. L. Oien, “Tunable red-yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
    [CrossRef]
  5. K. W. Kangas, D. D. Lowenthal, C. H. Muller, “Single-longitudinal-mode, tunable, pulsed Ti:sapphire laser oscillator,” Opt. Lett. 14, 21–23 (1989).
    [CrossRef] [PubMed]
  6. M. R. H. Knowles, C. E. Webb, “Cavity configurations for copper vapour laser pumped titanium sapphire lasers,” Opt. Commun. 89, 493–506 (1992).
    [CrossRef]
  7. J. C. Barnes, N. P. Barnes, G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 1029–1038 (1988).
    [CrossRef]
  8. K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
    [CrossRef]
  9. G. Onishchukov, W. Hodel, H. P. Weber, V. Mikhailov, B. Minkov, “CW lasing characteristics of high Cr4+-concentration forsterite,” Opt. Commun. 100, 137–140 (1993).
    [CrossRef]
  10. I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, T. A. King, “Chromium doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
    [CrossRef] [PubMed]
  11. I. T. McKinnie, L. A. W. Gloster, A. M. Oien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
    [CrossRef]
  12. T. Fujii, M. Nagano, K. Nemoto, “Slope efficiency and gain measurement of highly Cr4+-doped forsterite,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 81–84.
  13. I. T. McKinnie, A. J. Tiffany, D. M. Warrington, “Single frequency, coupled cavity, gain-switched chromium forsterite laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 72–75.
  14. T. F. Yamazaki, Mitsui Mining and Smelting Company, Ltd., 1333-2 Haraichi Ageo-Shi Saitama 362, Japan (personal communications, 1995, 1996).
  15. D. C. Hanna, P. A. Kärkkäinen, R. Wyatt, “A simple beam expander for frequency narrowing of dye lasers,” Opt. Quantum Electron. 7, 115–119 (1975).
    [CrossRef]
  16. P. W. Smith, “Stabilized, single-frequency output from a long laser cavity,” IEEE J. Quantum Electron. QE-1, 343–348 (1965).
    [CrossRef]
  17. A. A. Bakeyev, N. V. Cheburkin, “Natural frequencies of a three-mirror resonator,” Rad. Eng. Electron. Phys. (USSR) 14, 1125–1130 (1969).
  18. W. Koechner, “Solid State Laser Engineering,” 4th ed. (Springer-Verlag, Berlin, 1996).
  19. L. M. Frantz, J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
    [CrossRef]
  20. H. R. Verdun, L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr:forsterite laser,” in Advanced Solid State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 31–33.
  21. A. E. Kimaev, M. V. Korzhik, M. G. Livshits, B. I. Minkov, Ya. I. Mishkel, A. A. Tarasov, “Lasing characteristics of forsterite Mg2SiO4:Cr crystals,” Opt. Spectrosc. (USSR) 70, 415–416 (1991).
  22. V. Petricevic, A. Seas, R. R. Alfano, “Effective gain measurements in chromium doped forsterite,” in Advanced Solid State Lasers, H. P. Jensen, G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 73–78.
  23. V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
    [CrossRef] [PubMed]
  24. M. G. Livshits, Y. A. Mishkel, A. A. Tarasov, “Thermooptical and thermophysical characteristics of forsterite crystals,” Sov. J. Quantum Electron. 21, 1204–1206 (1991).
    [CrossRef]
  25. A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, C. Rullière, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
    [CrossRef]
  26. P. V. Avizonis, R. L. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687–693 (1966).
    [CrossRef]

1997 (1)

I. T. McKinnie, A. M. L. Oien, “Tunable red-yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
[CrossRef]

1996 (2)

I. T. McKinnie, L. A. W. Gloster, A. M. Oien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, T. A. King, “Chromium doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
[CrossRef] [PubMed]

1995 (1)

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, C. Rullière, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

1993 (2)

K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
[CrossRef]

G. Onishchukov, W. Hodel, H. P. Weber, V. Mikhailov, B. Minkov, “CW lasing characteristics of high Cr4+-concentration forsterite,” Opt. Commun. 100, 137–140 (1993).
[CrossRef]

1992 (1)

M. R. H. Knowles, C. E. Webb, “Cavity configurations for copper vapour laser pumped titanium sapphire lasers,” Opt. Commun. 89, 493–506 (1992).
[CrossRef]

1991 (2)

A. E. Kimaev, M. V. Korzhik, M. G. Livshits, B. I. Minkov, Ya. I. Mishkel, A. A. Tarasov, “Lasing characteristics of forsterite Mg2SiO4:Cr crystals,” Opt. Spectrosc. (USSR) 70, 415–416 (1991).

M. G. Livshits, Y. A. Mishkel, A. A. Tarasov, “Thermooptical and thermophysical characteristics of forsterite crystals,” Sov. J. Quantum Electron. 21, 1204–1206 (1991).
[CrossRef]

1989 (2)

1988 (4)

J. C. Barnes, N. P. Barnes, G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 1029–1038 (1988).
[CrossRef]

V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, “Chromium-doped forsterite laser pumped with 1.06 μm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
[CrossRef]

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

1975 (1)

D. C. Hanna, P. A. Kärkkäinen, R. Wyatt, “A simple beam expander for frequency narrowing of dye lasers,” Opt. Quantum Electron. 7, 115–119 (1975).
[CrossRef]

1969 (1)

A. A. Bakeyev, N. V. Cheburkin, “Natural frequencies of a three-mirror resonator,” Rad. Eng. Electron. Phys. (USSR) 14, 1125–1130 (1969).

1966 (1)

P. V. Avizonis, R. L. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687–693 (1966).
[CrossRef]

1965 (1)

P. W. Smith, “Stabilized, single-frequency output from a long laser cavity,” IEEE J. Quantum Electron. QE-1, 343–348 (1965).
[CrossRef]

1963 (1)

L. M. Frantz, J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Aggarwal, R. L.

K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
[CrossRef]

Alfano, R. R.

V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
[CrossRef] [PubMed]

V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

V. Petricevic, A. Seas, R. R. Alfano, “Effective gain measurements in chromium doped forsterite,” in Advanced Solid State Lasers, H. P. Jensen, G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 73–78.

Andrauskas, D. M.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, “Chromium-doped forsterite laser pumped with 1.06 μm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
[CrossRef]

Angert, N. B.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Avizonis, P. V.

P. V. Avizonis, R. L. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687–693 (1966).
[CrossRef]

Bakeyev, A. A.

A. A. Bakeyev, N. V. Cheburkin, “Natural frequencies of a three-mirror resonator,” Rad. Eng. Electron. Phys. (USSR) 14, 1125–1130 (1969).

Barnes, J. C.

J. C. Barnes, N. P. Barnes, G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 1029–1038 (1988).
[CrossRef]

Barnes, N. P.

J. C. Barnes, N. P. Barnes, G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 1029–1038 (1988).
[CrossRef]

Borodin, N. I.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Cheburkin, N. V.

A. A. Bakeyev, N. V. Cheburkin, “Natural frequencies of a three-mirror resonator,” Rad. Eng. Electron. Phys. (USSR) 14, 1125–1130 (1969).

Frantz, L. M.

L. M. Frantz, J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Fujii, T.

T. Fujii, M. Nagano, K. Nemoto, “Slope efficiency and gain measurement of highly Cr4+-doped forsterite,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 81–84.

Garmash, V. M.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Gayen, S. K.

V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
[CrossRef] [PubMed]

V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Gloster, L. A. W.

I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, T. A. King, “Chromium doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
[CrossRef] [PubMed]

I. T. McKinnie, L. A. W. Gloster, A. M. Oien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

Grotbeck, R. L.

P. V. Avizonis, R. L. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687–693 (1966).
[CrossRef]

Hanna, D. C.

D. C. Hanna, P. A. Kärkkäinen, R. Wyatt, “A simple beam expander for frequency narrowing of dye lasers,” Opt. Quantum Electron. 7, 115–119 (1975).
[CrossRef]

Hodel, W.

G. Onishchukov, W. Hodel, H. P. Weber, V. Mikhailov, B. Minkov, “CW lasing characteristics of high Cr4+-concentration forsterite,” Opt. Commun. 100, 137–140 (1993).
[CrossRef]

Ivanov, A. A.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, C. Rullière, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Jiang, Z. X.

Jonusauskas, G.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, C. Rullière, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Kangas, K. W.

Kärkkäinen, P. A.

D. C. Hanna, P. A. Kärkkäinen, R. Wyatt, “A simple beam expander for frequency narrowing of dye lasers,” Opt. Quantum Electron. 7, 115–119 (1975).
[CrossRef]

Kimaev, A. E.

A. E. Kimaev, M. V. Korzhik, M. G. Livshits, B. I. Minkov, Ya. I. Mishkel, A. A. Tarasov, “Lasing characteristics of forsterite Mg2SiO4:Cr crystals,” Opt. Spectrosc. (USSR) 70, 415–416 (1991).

King, T. A.

I. T. McKinnie, L. A. W. Gloster, A. M. Oien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, T. A. King, “Chromium doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
[CrossRef] [PubMed]

Knowles, M. R. H.

M. R. H. Knowles, C. E. Webb, “Cavity configurations for copper vapour laser pumped titanium sapphire lasers,” Opt. Commun. 89, 493–506 (1992).
[CrossRef]

Koechner, W.

W. Koechner, “Solid State Laser Engineering,” 4th ed. (Springer-Verlag, Berlin, 1996).

Korzhik, M. V.

A. E. Kimaev, M. V. Korzhik, M. G. Livshits, B. I. Minkov, Ya. I. Mishkel, A. A. Tarasov, “Lasing characteristics of forsterite Mg2SiO4:Cr crystals,” Opt. Spectrosc. (USSR) 70, 415–416 (1991).

Lacovara, P.

K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
[CrossRef]

Livshits, M. G.

A. E. Kimaev, M. V. Korzhik, M. G. Livshits, B. I. Minkov, Ya. I. Mishkel, A. A. Tarasov, “Lasing characteristics of forsterite Mg2SiO4:Cr crystals,” Opt. Spectrosc. (USSR) 70, 415–416 (1991).

M. G. Livshits, Y. A. Mishkel, A. A. Tarasov, “Thermooptical and thermophysical characteristics of forsterite crystals,” Sov. J. Quantum Electron. 21, 1204–1206 (1991).
[CrossRef]

Lowenthal, D. D.

McCollum, T.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, “Chromium-doped forsterite laser pumped with 1.06 μm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
[CrossRef]

McKinnie, I. T.

I. T. McKinnie, A. M. L. Oien, “Tunable red-yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
[CrossRef]

I. T. McKinnie, L. A. W. Gloster, A. M. Oien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, T. A. King, “Chromium doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
[CrossRef] [PubMed]

I. T. McKinnie, A. J. Tiffany, D. M. Warrington, “Single frequency, coupled cavity, gain-switched chromium forsterite laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 72–75.

Merkle, L.

H. R. Verdun, L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr:forsterite laser,” in Advanced Solid State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 31–33.

Mikhailov, V.

G. Onishchukov, W. Hodel, H. P. Weber, V. Mikhailov, B. Minkov, “CW lasing characteristics of high Cr4+-concentration forsterite,” Opt. Commun. 100, 137–140 (1993).
[CrossRef]

Miller, G. E.

J. C. Barnes, N. P. Barnes, G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 1029–1038 (1988).
[CrossRef]

Minkov, B.

G. Onishchukov, W. Hodel, H. P. Weber, V. Mikhailov, B. Minkov, “CW lasing characteristics of high Cr4+-concentration forsterite,” Opt. Commun. 100, 137–140 (1993).
[CrossRef]

Minkov, B. I.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, C. Rullière, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

A. E. Kimaev, M. V. Korzhik, M. G. Livshits, B. I. Minkov, Ya. I. Mishkel, A. A. Tarasov, “Lasing characteristics of forsterite Mg2SiO4:Cr crystals,” Opt. Spectrosc. (USSR) 70, 415–416 (1991).

Mishkel, Y. A.

M. G. Livshits, Y. A. Mishkel, A. A. Tarasov, “Thermooptical and thermophysical characteristics of forsterite crystals,” Sov. J. Quantum Electron. 21, 1204–1206 (1991).
[CrossRef]

Mishkel, Ya. I.

A. E. Kimaev, M. V. Korzhik, M. G. Livshits, B. I. Minkov, Ya. I. Mishkel, A. A. Tarasov, “Lasing characteristics of forsterite Mg2SiO4:Cr crystals,” Opt. Spectrosc. (USSR) 70, 415–416 (1991).

Muller, C. H.

Nagano, M.

T. Fujii, M. Nagano, K. Nemoto, “Slope efficiency and gain measurement of highly Cr4+-doped forsterite,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 81–84.

Nemoto, K.

T. Fujii, M. Nagano, K. Nemoto, “Slope efficiency and gain measurement of highly Cr4+-doped forsterite,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 81–84.

Nodvik, J. S.

L. M. Frantz, J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Oberlé, J.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, C. Rullière, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Oien, A. M.

I. T. McKinnie, L. A. W. Gloster, A. M. Oien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

Oien, A. M. L.

I. T. McKinnie, A. M. L. Oien, “Tunable red-yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
[CrossRef]

Okhrimchuk, A. G.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Onishchukov, G.

G. Onishchukov, W. Hodel, H. P. Weber, V. Mikhailov, B. Minkov, “CW lasing characteristics of high Cr4+-concentration forsterite,” Opt. Commun. 100, 137–140 (1993).
[CrossRef]

Petricevic, V.

V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
[CrossRef] [PubMed]

V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

V. Petricevic, A. Seas, R. R. Alfano, “Effective gain measurements in chromium doped forsterite,” in Advanced Solid State Lasers, H. P. Jensen, G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 73–78.

Rullière, C.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, C. Rullière, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Sanchez, A.

K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
[CrossRef]

Schulz, P. A.

K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
[CrossRef]

Seas, A.

V. Petricevic, A. Seas, R. R. Alfano, “Effective gain measurements in chromium doped forsterite,” in Advanced Solid State Lasers, H. P. Jensen, G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 73–78.

Shestakov, A. V.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Siyuchenko, O. G.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Smith, P. W.

P. W. Smith, “Stabilized, single-frequency output from a long laser cavity,” IEEE J. Quantum Electron. QE-1, 343–348 (1965).
[CrossRef]

Tarasov, A. A.

A. E. Kimaev, M. V. Korzhik, M. G. Livshits, B. I. Minkov, Ya. I. Mishkel, A. A. Tarasov, “Lasing characteristics of forsterite Mg2SiO4:Cr crystals,” Opt. Spectrosc. (USSR) 70, 415–416 (1991).

M. G. Livshits, Y. A. Mishkel, A. A. Tarasov, “Thermooptical and thermophysical characteristics of forsterite crystals,” Sov. J. Quantum Electron. 21, 1204–1206 (1991).
[CrossRef]

Thomas, L. M.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, “Chromium-doped forsterite laser pumped with 1.06 μm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
[CrossRef]

Tiffany, A. J.

I. T. McKinnie, A. J. Tiffany, D. M. Warrington, “Single frequency, coupled cavity, gain-switched chromium forsterite laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 72–75.

Verdun, H. R.

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, “Chromium-doped forsterite laser pumped with 1.06 μm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
[CrossRef]

H. R. Verdun, L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr:forsterite laser,” in Advanced Solid State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 31–33.

Wall, K. F.

K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
[CrossRef]

Warrington, D. M.

I. T. McKinnie, A. J. Tiffany, D. M. Warrington, “Single frequency, coupled cavity, gain-switched chromium forsterite laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 72–75.

Webb, C. E.

M. R. H. Knowles, C. E. Webb, “Cavity configurations for copper vapour laser pumped titanium sapphire lasers,” Opt. Commun. 89, 493–506 (1992).
[CrossRef]

Weber, H. P.

G. Onishchukov, W. Hodel, H. P. Weber, V. Mikhailov, B. Minkov, “CW lasing characteristics of high Cr4+-concentration forsterite,” Opt. Commun. 100, 137–140 (1993).
[CrossRef]

Wyatt, R.

D. C. Hanna, P. A. Kärkkäinen, R. Wyatt, “A simple beam expander for frequency narrowing of dye lasers,” Opt. Quantum Electron. 7, 115–119 (1975).
[CrossRef]

Yamazaki, T. F.

T. F. Yamazaki, Mitsui Mining and Smelting Company, Ltd., 1333-2 Haraichi Ageo-Shi Saitama 362, Japan (personal communications, 1995, 1996).

Zhitnyuk, V. A.

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

H. R. Verdun, L. M. Thomas, D. M. Andrauskas, T. McCollum, “Chromium-doped forsterite laser pumped with 1.06 μm radiation,” Appl. Phys. Lett. 53, 2593–2595 (1988).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. C. Barnes, N. P. Barnes, G. E. Miller, “Master oscillator power amplifier performance of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 1029–1038 (1988).
[CrossRef]

K. F. Wall, P. A. Schulz, R. L. Aggarwal, P. Lacovara, A. Sanchez, “A Ti:Al2O3 master oscillator/power-amplifier system,” IEEE J. Quantum Electron. 29, 1505–1514 (1993).
[CrossRef]

P. W. Smith, “Stabilized, single-frequency output from a long laser cavity,” IEEE J. Quantum Electron. QE-1, 343–348 (1965).
[CrossRef]

J. Appl. Phys. (2)

L. M. Frantz, J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

P. V. Avizonis, R. L. Grotbeck, “Experimental and theoretical ruby laser amplifier dynamics,” J. Appl. Phys. 37, 687–693 (1966).
[CrossRef]

Opt. Commun. (5)

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, C. Rullière, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

G. Onishchukov, W. Hodel, H. P. Weber, V. Mikhailov, B. Minkov, “CW lasing characteristics of high Cr4+-concentration forsterite,” Opt. Commun. 100, 137–140 (1993).
[CrossRef]

I. T. McKinnie, L. A. W. Gloster, A. M. Oien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

I. T. McKinnie, A. M. L. Oien, “Tunable red-yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
[CrossRef]

M. R. H. Knowles, C. E. Webb, “Cavity configurations for copper vapour laser pumped titanium sapphire lasers,” Opt. Commun. 89, 493–506 (1992).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

D. C. Hanna, P. A. Kärkkäinen, R. Wyatt, “A simple beam expander for frequency narrowing of dye lasers,” Opt. Quantum Electron. 7, 115–119 (1975).
[CrossRef]

Opt. Spectrosc. (USSR) (1)

A. E. Kimaev, M. V. Korzhik, M. G. Livshits, B. I. Minkov, Ya. I. Mishkel, A. A. Tarasov, “Lasing characteristics of forsterite Mg2SiO4:Cr crystals,” Opt. Spectrosc. (USSR) 70, 415–416 (1991).

Rad. Eng. Electron. Phys. (USSR) (1)

A. A. Bakeyev, N. V. Cheburkin, “Natural frequencies of a three-mirror resonator,” Rad. Eng. Electron. Phys. (USSR) 14, 1125–1130 (1969).

Sov. J. Quantum Electron. (2)

M. G. Livshits, Y. A. Mishkel, A. A. Tarasov, “Thermooptical and thermophysical characteristics of forsterite crystals,” Sov. J. Quantum Electron. 21, 1204–1206 (1991).
[CrossRef]

N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
[CrossRef]

Other (6)

T. Fujii, M. Nagano, K. Nemoto, “Slope efficiency and gain measurement of highly Cr4+-doped forsterite,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 81–84.

I. T. McKinnie, A. J. Tiffany, D. M. Warrington, “Single frequency, coupled cavity, gain-switched chromium forsterite laser,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 72–75.

T. F. Yamazaki, Mitsui Mining and Smelting Company, Ltd., 1333-2 Haraichi Ageo-Shi Saitama 362, Japan (personal communications, 1995, 1996).

V. Petricevic, A. Seas, R. R. Alfano, “Effective gain measurements in chromium doped forsterite,” in Advanced Solid State Lasers, H. P. Jensen, G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 73–78.

W. Koechner, “Solid State Laser Engineering,” 4th ed. (Springer-Verlag, Berlin, 1996).

H. R. Verdun, L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr:forsterite laser,” in Advanced Solid State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 31–33.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the experimental configuration: (a) an overview of the oscillator–amplifier system and (b) detail of the oscillator cavity.

Fig. 2
Fig. 2

Output spectrum of the Littrow cavity Cr:forsterite laser. The diagnostic etalon had a free spectral range of 200 GHz.

Fig. 3
Fig. 3

(a) Solution of the resonance condition [expression (2)] as a function of frequency relative to the base resonator mode frequency. Straight lines represent q - Δp 12. The stepped function shown by the bold curve is Δφ234/2π. (b) Power loss as a function of frequency relative to the base resonator mode frequency.

Fig. 4
Fig. 4

Output spectrum of the single-mode Cr:forsterite laser. The diagnostic etalon had a free spectral range of 2.5 GHz and a finesse of 21.

Fig. 5
Fig. 5

Tuning range of the single-mode Cr:forsterite oscillator.

Fig. 6
Fig. 6

Gain as a function of pump fluence for three different Cr:forsterite amplifier rods with an oscillator fluence of 0.95 J cm-2. Results are shown for (a) single-pass and (b) double-pass configurations.

Fig. 7
Fig. 7

Double-pass gain as a function of oscillator fluence for two Cr:forsterite amplifier rods with a pump fluence of 1.2 J cm-2.

Fig. 8
Fig. 8

Tuning range of the Cr:forsterite oscillator–amplifier output.

Fig. 9
Fig. 9

Spatial profiles of the Cr:forsterite oscillator–amplifier output measured along two perpendicular axes.

Tables (1)

Tables Icon

Table 1 Cr:Forsterite Oscillator and Amplifier Crystals

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

FOM = α 1064 α 1235 ,
ar 1 r 234 exp j ω t + ϕ 234 + 2 π p 12 ,
2 π Δ p 12 + Δ ϕ 234 = 2 π q ,
L = 1 - 1 a th a th * .
E dp = E s ln 1 + exp E 0 / E s - 1 exp 2 g 0 l ,

Metrics