Abstract

We demonstrate a new design for a four-pass dye laser amplifier that can be used to reduce amplified spontaneous emission (ASE) in the amplifier output beam. Compared with the results obtained from normal operation of the four-pass dye laser amplifier without a frequency-selective device, by using a diffraction grating in the amplifier we can reduce the ASE ratio by a factor in excess of 10 and increase output energy by ∼4%. The obtained ASE ratio of the four-pass amplifier system is <1.5%.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Parlmer, J. P. Looney, J. W. Hahn, “High resolution inverse Raman spectroscopy of the CO Q-branch,” in Pulse Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 171–183 (1988).
  2. M. S. Brown, L. A. Rahn, T. Dreier, “High-resolution degenerate four-wave mixing spectral profiles of OH,” Opt. Lett. 17, 76–79 (1992).
    [CrossRef] [PubMed]
  3. R. L. Farrow, D. J. Rakestraw, “Detection of trace molecular species using degenerated four-wave mixing,” Science 257, 1894–1900 (1992).
    [CrossRef] [PubMed]
  4. F. Trehin, F. Biraben, B. Cagnac, G. Grynberg, “Flashlamp pumped tunable dye laser of ultranarrow bandwidth,” Opt. Commun. 31, 76–80 (1979).
    [CrossRef]
  5. L. A. Rahn, “Feedback stabilization of an injection-seeded Nd:YAG laser,” Appl. Opt. 24, 940–942 (1985).
    [CrossRef] [PubMed]
  6. J. P. Boquilon, Y. Ouazzany, R. Chaux, “Injection-locked flashlamp-pumped dye lasers of very narrow linewidth in the 570–720 nm range,” J. Appl. Phys. 62, 23–30 (1987).
    [CrossRef]
  7. E. Cromwell, T. Trickl, Y. T. Lee, A. H. Hong, “Ultranarrow bandwidth VUV–XUV laser system,” Rev. Sci. Instrum. 60, 2888–2892 (1989).
    [CrossRef]
  8. J. F. Black, J. J. Valentini, “Compact, high-gain pulsed dye amplifier for weak cw sources,” Appl. Opt. 33, 3861–3864 (1994).
    [CrossRef] [PubMed]
  9. P. Ewart, D. R. Meacher, “A novel, widely tunable, single mode pulsed dye laser,” Opt. Commun. 71, 197–201 (1989).
    [CrossRef]
  10. N. F. Anderyev, A. Z. Matveyev, A. A. Kocherov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Phase conjugation to upgrade efficiency of solid-state-laser energy conversion to narrow-band TEM00 mode pulses,” IEEE J. Quantum Electron. 30, 305–313 (1994).
    [CrossRef]
  11. K. G. Han, H. J. Kong, “Four-pass amplifier systems compensating thermally induced birefringence effect, using a novel dumping mechanism,” Jpn J. Appl. Phys. 31, L994–L996 (1995).
    [CrossRef]
  12. E. S. Lee, J. W. Hahn, “Four-pass amplifier for the pulsed amplification of a narrow-bandwidth continuous-wave dye laser,” Opt. Lett. 21, 1836–1838 (1996).
    [CrossRef] [PubMed]
  13. J. W. Hahn, S. N. Park, E. S. Lee, C. Rhee, Realization of International Temperature Scale-90 above 961.78 °C and Study on the Calibration System for Radiation Thermometers by Using a Standard Optical Pyrometer with a Silicon Detector, Vol. 6, Part 1 of Temperature, Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), pp. 227–232.
  14. J. W. Hahn, S. S. Lee, “Measurement of the amplified spontaneous emission loss in an iodine photodissociation laser amplifier,” J. Appl. Phys. 58, 3926–3928 (1985).
    [CrossRef]

1996 (1)

1995 (1)

K. G. Han, H. J. Kong, “Four-pass amplifier systems compensating thermally induced birefringence effect, using a novel dumping mechanism,” Jpn J. Appl. Phys. 31, L994–L996 (1995).
[CrossRef]

1994 (2)

N. F. Anderyev, A. Z. Matveyev, A. A. Kocherov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Phase conjugation to upgrade efficiency of solid-state-laser energy conversion to narrow-band TEM00 mode pulses,” IEEE J. Quantum Electron. 30, 305–313 (1994).
[CrossRef]

J. F. Black, J. J. Valentini, “Compact, high-gain pulsed dye amplifier for weak cw sources,” Appl. Opt. 33, 3861–3864 (1994).
[CrossRef] [PubMed]

1992 (2)

M. S. Brown, L. A. Rahn, T. Dreier, “High-resolution degenerate four-wave mixing spectral profiles of OH,” Opt. Lett. 17, 76–79 (1992).
[CrossRef] [PubMed]

R. L. Farrow, D. J. Rakestraw, “Detection of trace molecular species using degenerated four-wave mixing,” Science 257, 1894–1900 (1992).
[CrossRef] [PubMed]

1989 (2)

E. Cromwell, T. Trickl, Y. T. Lee, A. H. Hong, “Ultranarrow bandwidth VUV–XUV laser system,” Rev. Sci. Instrum. 60, 2888–2892 (1989).
[CrossRef]

P. Ewart, D. R. Meacher, “A novel, widely tunable, single mode pulsed dye laser,” Opt. Commun. 71, 197–201 (1989).
[CrossRef]

1987 (1)

J. P. Boquilon, Y. Ouazzany, R. Chaux, “Injection-locked flashlamp-pumped dye lasers of very narrow linewidth in the 570–720 nm range,” J. Appl. Phys. 62, 23–30 (1987).
[CrossRef]

1985 (2)

J. W. Hahn, S. S. Lee, “Measurement of the amplified spontaneous emission loss in an iodine photodissociation laser amplifier,” J. Appl. Phys. 58, 3926–3928 (1985).
[CrossRef]

L. A. Rahn, “Feedback stabilization of an injection-seeded Nd:YAG laser,” Appl. Opt. 24, 940–942 (1985).
[CrossRef] [PubMed]

1979 (1)

F. Trehin, F. Biraben, B. Cagnac, G. Grynberg, “Flashlamp pumped tunable dye laser of ultranarrow bandwidth,” Opt. Commun. 31, 76–80 (1979).
[CrossRef]

Anderyev, N. F.

N. F. Anderyev, A. Z. Matveyev, A. A. Kocherov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Phase conjugation to upgrade efficiency of solid-state-laser energy conversion to narrow-band TEM00 mode pulses,” IEEE J. Quantum Electron. 30, 305–313 (1994).
[CrossRef]

Biraben, F.

F. Trehin, F. Biraben, B. Cagnac, G. Grynberg, “Flashlamp pumped tunable dye laser of ultranarrow bandwidth,” Opt. Commun. 31, 76–80 (1979).
[CrossRef]

Black, J. F.

Boquilon, J. P.

J. P. Boquilon, Y. Ouazzany, R. Chaux, “Injection-locked flashlamp-pumped dye lasers of very narrow linewidth in the 570–720 nm range,” J. Appl. Phys. 62, 23–30 (1987).
[CrossRef]

Brown, M. S.

Cagnac, B.

F. Trehin, F. Biraben, B. Cagnac, G. Grynberg, “Flashlamp pumped tunable dye laser of ultranarrow bandwidth,” Opt. Commun. 31, 76–80 (1979).
[CrossRef]

Chaux, R.

J. P. Boquilon, Y. Ouazzany, R. Chaux, “Injection-locked flashlamp-pumped dye lasers of very narrow linewidth in the 570–720 nm range,” J. Appl. Phys. 62, 23–30 (1987).
[CrossRef]

Cromwell, E.

E. Cromwell, T. Trickl, Y. T. Lee, A. H. Hong, “Ultranarrow bandwidth VUV–XUV laser system,” Rev. Sci. Instrum. 60, 2888–2892 (1989).
[CrossRef]

Dreier, T.

Ewart, P.

P. Ewart, D. R. Meacher, “A novel, widely tunable, single mode pulsed dye laser,” Opt. Commun. 71, 197–201 (1989).
[CrossRef]

Farrow, R. L.

R. L. Farrow, D. J. Rakestraw, “Detection of trace molecular species using degenerated four-wave mixing,” Science 257, 1894–1900 (1992).
[CrossRef] [PubMed]

Grynberg, G.

F. Trehin, F. Biraben, B. Cagnac, G. Grynberg, “Flashlamp pumped tunable dye laser of ultranarrow bandwidth,” Opt. Commun. 31, 76–80 (1979).
[CrossRef]

Hahn, J. W.

E. S. Lee, J. W. Hahn, “Four-pass amplifier for the pulsed amplification of a narrow-bandwidth continuous-wave dye laser,” Opt. Lett. 21, 1836–1838 (1996).
[CrossRef] [PubMed]

J. W. Hahn, S. S. Lee, “Measurement of the amplified spontaneous emission loss in an iodine photodissociation laser amplifier,” J. Appl. Phys. 58, 3926–3928 (1985).
[CrossRef]

J. W. Hahn, S. N. Park, E. S. Lee, C. Rhee, Realization of International Temperature Scale-90 above 961.78 °C and Study on the Calibration System for Radiation Thermometers by Using a Standard Optical Pyrometer with a Silicon Detector, Vol. 6, Part 1 of Temperature, Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), pp. 227–232.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Parlmer, J. P. Looney, J. W. Hahn, “High resolution inverse Raman spectroscopy of the CO Q-branch,” in Pulse Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 171–183 (1988).

Han, K. G.

K. G. Han, H. J. Kong, “Four-pass amplifier systems compensating thermally induced birefringence effect, using a novel dumping mechanism,” Jpn J. Appl. Phys. 31, L994–L996 (1995).
[CrossRef]

Hong, A. H.

E. Cromwell, T. Trickl, Y. T. Lee, A. H. Hong, “Ultranarrow bandwidth VUV–XUV laser system,” Rev. Sci. Instrum. 60, 2888–2892 (1989).
[CrossRef]

Hurst, W. S.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Parlmer, J. P. Looney, J. W. Hahn, “High resolution inverse Raman spectroscopy of the CO Q-branch,” in Pulse Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 171–183 (1988).

Khazanov, E. A.

N. F. Anderyev, A. Z. Matveyev, A. A. Kocherov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Phase conjugation to upgrade efficiency of solid-state-laser energy conversion to narrow-band TEM00 mode pulses,” IEEE J. Quantum Electron. 30, 305–313 (1994).
[CrossRef]

Kocherov, A. A.

N. F. Anderyev, A. Z. Matveyev, A. A. Kocherov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Phase conjugation to upgrade efficiency of solid-state-laser energy conversion to narrow-band TEM00 mode pulses,” IEEE J. Quantum Electron. 30, 305–313 (1994).
[CrossRef]

Kong, H. J.

K. G. Han, H. J. Kong, “Four-pass amplifier systems compensating thermally induced birefringence effect, using a novel dumping mechanism,” Jpn J. Appl. Phys. 31, L994–L996 (1995).
[CrossRef]

Lee, E. S.

E. S. Lee, J. W. Hahn, “Four-pass amplifier for the pulsed amplification of a narrow-bandwidth continuous-wave dye laser,” Opt. Lett. 21, 1836–1838 (1996).
[CrossRef] [PubMed]

J. W. Hahn, S. N. Park, E. S. Lee, C. Rhee, Realization of International Temperature Scale-90 above 961.78 °C and Study on the Calibration System for Radiation Thermometers by Using a Standard Optical Pyrometer with a Silicon Detector, Vol. 6, Part 1 of Temperature, Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), pp. 227–232.

Lee, S. S.

J. W. Hahn, S. S. Lee, “Measurement of the amplified spontaneous emission loss in an iodine photodissociation laser amplifier,” J. Appl. Phys. 58, 3926–3928 (1985).
[CrossRef]

Lee, Y. T.

E. Cromwell, T. Trickl, Y. T. Lee, A. H. Hong, “Ultranarrow bandwidth VUV–XUV laser system,” Rev. Sci. Instrum. 60, 2888–2892 (1989).
[CrossRef]

Looney, J. P.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Parlmer, J. P. Looney, J. W. Hahn, “High resolution inverse Raman spectroscopy of the CO Q-branch,” in Pulse Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 171–183 (1988).

Matveyev, A. Z.

N. F. Anderyev, A. Z. Matveyev, A. A. Kocherov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Phase conjugation to upgrade efficiency of solid-state-laser energy conversion to narrow-band TEM00 mode pulses,” IEEE J. Quantum Electron. 30, 305–313 (1994).
[CrossRef]

Meacher, D. R.

P. Ewart, D. R. Meacher, “A novel, widely tunable, single mode pulsed dye laser,” Opt. Commun. 71, 197–201 (1989).
[CrossRef]

Ouazzany, Y.

J. P. Boquilon, Y. Ouazzany, R. Chaux, “Injection-locked flashlamp-pumped dye lasers of very narrow linewidth in the 570–720 nm range,” J. Appl. Phys. 62, 23–30 (1987).
[CrossRef]

Palashov, O. V.

N. F. Anderyev, A. Z. Matveyev, A. A. Kocherov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Phase conjugation to upgrade efficiency of solid-state-laser energy conversion to narrow-band TEM00 mode pulses,” IEEE J. Quantum Electron. 30, 305–313 (1994).
[CrossRef]

Park, S. N.

J. W. Hahn, S. N. Park, E. S. Lee, C. Rhee, Realization of International Temperature Scale-90 above 961.78 °C and Study on the Calibration System for Radiation Thermometers by Using a Standard Optical Pyrometer with a Silicon Detector, Vol. 6, Part 1 of Temperature, Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), pp. 227–232.

Parlmer, R. E.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Parlmer, J. P. Looney, J. W. Hahn, “High resolution inverse Raman spectroscopy of the CO Q-branch,” in Pulse Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 171–183 (1988).

Pasmanik, G. A.

N. F. Anderyev, A. Z. Matveyev, A. A. Kocherov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Phase conjugation to upgrade efficiency of solid-state-laser energy conversion to narrow-band TEM00 mode pulses,” IEEE J. Quantum Electron. 30, 305–313 (1994).
[CrossRef]

Rahn, L. A.

M. S. Brown, L. A. Rahn, T. Dreier, “High-resolution degenerate four-wave mixing spectral profiles of OH,” Opt. Lett. 17, 76–79 (1992).
[CrossRef] [PubMed]

L. A. Rahn, “Feedback stabilization of an injection-seeded Nd:YAG laser,” Appl. Opt. 24, 940–942 (1985).
[CrossRef] [PubMed]

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Parlmer, J. P. Looney, J. W. Hahn, “High resolution inverse Raman spectroscopy of the CO Q-branch,” in Pulse Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 171–183 (1988).

Rakestraw, D. J.

R. L. Farrow, D. J. Rakestraw, “Detection of trace molecular species using degenerated four-wave mixing,” Science 257, 1894–1900 (1992).
[CrossRef] [PubMed]

Rhee, C.

J. W. Hahn, S. N. Park, E. S. Lee, C. Rhee, Realization of International Temperature Scale-90 above 961.78 °C and Study on the Calibration System for Radiation Thermometers by Using a Standard Optical Pyrometer with a Silicon Detector, Vol. 6, Part 1 of Temperature, Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), pp. 227–232.

Rosasco, G. J.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Parlmer, J. P. Looney, J. W. Hahn, “High resolution inverse Raman spectroscopy of the CO Q-branch,” in Pulse Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 171–183 (1988).

Trehin, F.

F. Trehin, F. Biraben, B. Cagnac, G. Grynberg, “Flashlamp pumped tunable dye laser of ultranarrow bandwidth,” Opt. Commun. 31, 76–80 (1979).
[CrossRef]

Trickl, T.

E. Cromwell, T. Trickl, Y. T. Lee, A. H. Hong, “Ultranarrow bandwidth VUV–XUV laser system,” Rev. Sci. Instrum. 60, 2888–2892 (1989).
[CrossRef]

Valentini, J. J.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

N. F. Anderyev, A. Z. Matveyev, A. A. Kocherov, O. V. Palashov, G. A. Pasmanik, E. A. Khazanov, “Phase conjugation to upgrade efficiency of solid-state-laser energy conversion to narrow-band TEM00 mode pulses,” IEEE J. Quantum Electron. 30, 305–313 (1994).
[CrossRef]

J. Appl. Phys. (2)

J. P. Boquilon, Y. Ouazzany, R. Chaux, “Injection-locked flashlamp-pumped dye lasers of very narrow linewidth in the 570–720 nm range,” J. Appl. Phys. 62, 23–30 (1987).
[CrossRef]

J. W. Hahn, S. S. Lee, “Measurement of the amplified spontaneous emission loss in an iodine photodissociation laser amplifier,” J. Appl. Phys. 58, 3926–3928 (1985).
[CrossRef]

Jpn J. Appl. Phys. (1)

K. G. Han, H. J. Kong, “Four-pass amplifier systems compensating thermally induced birefringence effect, using a novel dumping mechanism,” Jpn J. Appl. Phys. 31, L994–L996 (1995).
[CrossRef]

Opt. Commun. (2)

F. Trehin, F. Biraben, B. Cagnac, G. Grynberg, “Flashlamp pumped tunable dye laser of ultranarrow bandwidth,” Opt. Commun. 31, 76–80 (1979).
[CrossRef]

P. Ewart, D. R. Meacher, “A novel, widely tunable, single mode pulsed dye laser,” Opt. Commun. 71, 197–201 (1989).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

E. Cromwell, T. Trickl, Y. T. Lee, A. H. Hong, “Ultranarrow bandwidth VUV–XUV laser system,” Rev. Sci. Instrum. 60, 2888–2892 (1989).
[CrossRef]

Science (1)

R. L. Farrow, D. J. Rakestraw, “Detection of trace molecular species using degenerated four-wave mixing,” Science 257, 1894–1900 (1992).
[CrossRef] [PubMed]

Other (2)

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Parlmer, J. P. Looney, J. W. Hahn, “High resolution inverse Raman spectroscopy of the CO Q-branch,” in Pulse Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 171–183 (1988).

J. W. Hahn, S. N. Park, E. S. Lee, C. Rhee, Realization of International Temperature Scale-90 above 961.78 °C and Study on the Calibration System for Radiation Thermometers by Using a Standard Optical Pyrometer with a Silicon Detector, Vol. 6, Part 1 of Temperature, Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1992), pp. 227–232.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Four-pass amplifier for measurement of the characteristics of ASE from the amplifier: P1, P2, and P3, crystal polarizers; FR, Faraday rotator; PR1 and PR2, polarization rotators; DGM, dye gain medium; M1, M2, M3, and M4, mirrors; G, diffraction grating; 1, 2, and 3, positions of the filter glass.

Fig. 2
Fig. 2

Ratio of ASE from the four-pass amplifier. 1, 2, and 3 indicate the positions of the filter glass.

Fig. 3
Fig. 3

Relative output energy of the four-pass amplifier. 1, 2, and 3 indicate the positions of the filter glass.

Metrics