Abstract

We report what is to our knowledge the first possibility of a NO2 molecular magnetometer based on the Zeeman modulation magnetic rotation spectroscopic (ZM MRS) technique and the magneto-optic activity of NO2. The linear dependence of the ZM MRS signal intensity on the modulating magnetic field is theoretically analyzed and experimentally measured. The design concept of the magnetometer and its main features are discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
    [CrossRef]
  2. J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of OH free radical fundamental band with colour centre laser,” Appl. Phys. B 26, 173–177 (1981).
    [CrossRef]
  3. A. D. Buckingham, P. J. Stephens, “Magnetic optical activity,” Ann. Rev. Phys. Chem. 17, 399–432 (1966).
    [CrossRef]
  4. J. M. Brown, A. D. Buckingham, D. A. Ramsay, “High resolution studies of magnetic optical activity in the 3A2–1A1 system of formaldehyde,” Can. J. Phys. 54, 895–906 (1976).
    [CrossRef]
  5. C. G. Stevens, R. N. Zare, “Rotational analysis of the 593.3 nm band of NO2,” J. Mol. Spectrosc. 56, 167–187 (1975).
    [CrossRef]
  6. T. Tanaka, R. W. Field, D. O. Harris, “Microwave optical double resonance and continuous wave dye laser excitation spectroscopy of NO2 rotational assignment of the K = 0–4 subband of 593 nm band,” J. Mol. Spectrosc. 56, 188–199 (1975).
    [CrossRef]
  7. R. Georges, A. Delon, F. Bylicki, R. Jost, A. Campargue, A. Charvat, M. Chenevier, F. Stoeckel, “Jet cooled NO2 intra cavity laser absorption spectroscopy (ICLAS) between 11,200 and 16,150 cm-1,” Chem. Phys. 190, 207–229 (1995).
    [CrossRef]

1995

R. Georges, A. Delon, F. Bylicki, R. Jost, A. Campargue, A. Charvat, M. Chenevier, F. Stoeckel, “Jet cooled NO2 intra cavity laser absorption spectroscopy (ICLAS) between 11,200 and 16,150 cm-1,” Chem. Phys. 190, 207–229 (1995).
[CrossRef]

1981

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of OH free radical fundamental band with colour centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

1980

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

1976

J. M. Brown, A. D. Buckingham, D. A. Ramsay, “High resolution studies of magnetic optical activity in the 3A2–1A1 system of formaldehyde,” Can. J. Phys. 54, 895–906 (1976).
[CrossRef]

1975

C. G. Stevens, R. N. Zare, “Rotational analysis of the 593.3 nm band of NO2,” J. Mol. Spectrosc. 56, 167–187 (1975).
[CrossRef]

T. Tanaka, R. W. Field, D. O. Harris, “Microwave optical double resonance and continuous wave dye laser excitation spectroscopy of NO2 rotational assignment of the K = 0–4 subband of 593 nm band,” J. Mol. Spectrosc. 56, 188–199 (1975).
[CrossRef]

1966

A. D. Buckingham, P. J. Stephens, “Magnetic optical activity,” Ann. Rev. Phys. Chem. 17, 399–432 (1966).
[CrossRef]

Brown, J. M.

J. M. Brown, A. D. Buckingham, D. A. Ramsay, “High resolution studies of magnetic optical activity in the 3A2–1A1 system of formaldehyde,” Can. J. Phys. 54, 895–906 (1976).
[CrossRef]

Buckingham, A. D.

J. M. Brown, A. D. Buckingham, D. A. Ramsay, “High resolution studies of magnetic optical activity in the 3A2–1A1 system of formaldehyde,” Can. J. Phys. 54, 895–906 (1976).
[CrossRef]

A. D. Buckingham, P. J. Stephens, “Magnetic optical activity,” Ann. Rev. Phys. Chem. 17, 399–432 (1966).
[CrossRef]

Bylicki, F.

R. Georges, A. Delon, F. Bylicki, R. Jost, A. Campargue, A. Charvat, M. Chenevier, F. Stoeckel, “Jet cooled NO2 intra cavity laser absorption spectroscopy (ICLAS) between 11,200 and 16,150 cm-1,” Chem. Phys. 190, 207–229 (1995).
[CrossRef]

Campargue, A.

R. Georges, A. Delon, F. Bylicki, R. Jost, A. Campargue, A. Charvat, M. Chenevier, F. Stoeckel, “Jet cooled NO2 intra cavity laser absorption spectroscopy (ICLAS) between 11,200 and 16,150 cm-1,” Chem. Phys. 190, 207–229 (1995).
[CrossRef]

Charvat, A.

R. Georges, A. Delon, F. Bylicki, R. Jost, A. Campargue, A. Charvat, M. Chenevier, F. Stoeckel, “Jet cooled NO2 intra cavity laser absorption spectroscopy (ICLAS) between 11,200 and 16,150 cm-1,” Chem. Phys. 190, 207–229 (1995).
[CrossRef]

Chenevier, M.

R. Georges, A. Delon, F. Bylicki, R. Jost, A. Campargue, A. Charvat, M. Chenevier, F. Stoeckel, “Jet cooled NO2 intra cavity laser absorption spectroscopy (ICLAS) between 11,200 and 16,150 cm-1,” Chem. Phys. 190, 207–229 (1995).
[CrossRef]

Curl, R. F.

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Delon, A.

R. Georges, A. Delon, F. Bylicki, R. Jost, A. Campargue, A. Charvat, M. Chenevier, F. Stoeckel, “Jet cooled NO2 intra cavity laser absorption spectroscopy (ICLAS) between 11,200 and 16,150 cm-1,” Chem. Phys. 190, 207–229 (1995).
[CrossRef]

Field, R. W.

T. Tanaka, R. W. Field, D. O. Harris, “Microwave optical double resonance and continuous wave dye laser excitation spectroscopy of NO2 rotational assignment of the K = 0–4 subband of 593 nm band,” J. Mol. Spectrosc. 56, 188–199 (1975).
[CrossRef]

Georges, R.

R. Georges, A. Delon, F. Bylicki, R. Jost, A. Campargue, A. Charvat, M. Chenevier, F. Stoeckel, “Jet cooled NO2 intra cavity laser absorption spectroscopy (ICLAS) between 11,200 and 16,150 cm-1,” Chem. Phys. 190, 207–229 (1995).
[CrossRef]

Harris, D. O.

T. Tanaka, R. W. Field, D. O. Harris, “Microwave optical double resonance and continuous wave dye laser excitation spectroscopy of NO2 rotational assignment of the K = 0–4 subband of 593 nm band,” J. Mol. Spectrosc. 56, 188–199 (1975).
[CrossRef]

Jost, R.

R. Georges, A. Delon, F. Bylicki, R. Jost, A. Campargue, A. Charvat, M. Chenevier, F. Stoeckel, “Jet cooled NO2 intra cavity laser absorption spectroscopy (ICLAS) between 11,200 and 16,150 cm-1,” Chem. Phys. 190, 207–229 (1995).
[CrossRef]

Kalkert, P.

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of OH free radical fundamental band with colour centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

Kirsten, D.

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of OH free radical fundamental band with colour centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

Litfin, G.

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Pfeiffer, J.

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of OH free radical fundamental band with colour centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

Pollock, C. R.

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Ramsay, D. A.

J. M. Brown, A. D. Buckingham, D. A. Ramsay, “High resolution studies of magnetic optical activity in the 3A2–1A1 system of formaldehyde,” Can. J. Phys. 54, 895–906 (1976).
[CrossRef]

Stephens, P. J.

A. D. Buckingham, P. J. Stephens, “Magnetic optical activity,” Ann. Rev. Phys. Chem. 17, 399–432 (1966).
[CrossRef]

Stevens, C. G.

C. G. Stevens, R. N. Zare, “Rotational analysis of the 593.3 nm band of NO2,” J. Mol. Spectrosc. 56, 167–187 (1975).
[CrossRef]

Stoeckel, F.

R. Georges, A. Delon, F. Bylicki, R. Jost, A. Campargue, A. Charvat, M. Chenevier, F. Stoeckel, “Jet cooled NO2 intra cavity laser absorption spectroscopy (ICLAS) between 11,200 and 16,150 cm-1,” Chem. Phys. 190, 207–229 (1995).
[CrossRef]

Tanaka, T.

T. Tanaka, R. W. Field, D. O. Harris, “Microwave optical double resonance and continuous wave dye laser excitation spectroscopy of NO2 rotational assignment of the K = 0–4 subband of 593 nm band,” J. Mol. Spectrosc. 56, 188–199 (1975).
[CrossRef]

Tittel, F. K.

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Urban, W.

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of OH free radical fundamental band with colour centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

Zare, R. N.

C. G. Stevens, R. N. Zare, “Rotational analysis of the 593.3 nm band of NO2,” J. Mol. Spectrosc. 56, 167–187 (1975).
[CrossRef]

Ann. Rev. Phys. Chem.

A. D. Buckingham, P. J. Stephens, “Magnetic optical activity,” Ann. Rev. Phys. Chem. 17, 399–432 (1966).
[CrossRef]

Appl. Phys. B

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of OH free radical fundamental band with colour centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

Can. J. Phys.

J. M. Brown, A. D. Buckingham, D. A. Ramsay, “High resolution studies of magnetic optical activity in the 3A2–1A1 system of formaldehyde,” Can. J. Phys. 54, 895–906 (1976).
[CrossRef]

Chem. Phys.

R. Georges, A. Delon, F. Bylicki, R. Jost, A. Campargue, A. Charvat, M. Chenevier, F. Stoeckel, “Jet cooled NO2 intra cavity laser absorption spectroscopy (ICLAS) between 11,200 and 16,150 cm-1,” Chem. Phys. 190, 207–229 (1995).
[CrossRef]

J. Chem. Phys.

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

J. Mol. Spectrosc.

C. G. Stevens, R. N. Zare, “Rotational analysis of the 593.3 nm band of NO2,” J. Mol. Spectrosc. 56, 167–187 (1975).
[CrossRef]

T. Tanaka, R. W. Field, D. O. Harris, “Microwave optical double resonance and continuous wave dye laser excitation spectroscopy of NO2 rotational assignment of the K = 0–4 subband of 593 nm band,” J. Mol. Spectrosc. 56, 188–199 (1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental setup of the ZM MSR.

Fig. 2
Fig. 2

Dependence of the ZM MRS signal on the magnetic field.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ϕ = ω 2 c n + - n - L ,
θ = ω 2 c κ + - κ - L ,
ϕ = ω 2 c ϕ 0 + ϕ 1 B z + ϕ 2 B z 2 + L ,
I = I 0 sin 2 ϕ ± φ + ξ ,
I = I 0 φ 2 ± 2 ϕφ + ϕ 2 + ξ .
I = I 0 φ 2 ± 2 ϕφ + ξ .
I = I 0 φ 2 + ξ ± ω / c φ L ϕ 0 + ϕ 1 B z + ϕ 2 B z 2 + .
B z = B z 0 sin   ω m t ,
I = I 0 φ 2 + ξ ± ω / c φ L ϕ 0 + ϕ 1 B z 0 sin   ω m t + ϕ 2 B z 0 2 sin 2   ω m t + .
I D = ± ω / c φ L ϕ 1 B z 0 I 0 .
B = ± 2 c 2 ω φ L ϕ 1 I D I 0 .
J 1 = N + 1 / 2 F 1 ,     J 2 = N - 1 / 2 F 2 .
Δ E = ± 1 2 N + 1   g e μ B BM J ,
Δ ν = 2 Δ E - Δ E h = 2 1 2 N + 1 - 1 2 N + 1 g e μ B B h ,
B max = h Δ ν max 2 1 2 N + 1 - 1 2 N + 1 g e μ B 200   mT .
B = - 1.84 + 7.57 I D μ T ,

Metrics