Abstract

The global distribution of tropospheric ozone (O3) can be observed from a satellite-based instrument by spectrally isolating the pressure-broadened wings of strong O3 lines. The Fabry–Perot interferometer (FPI) provides high spectral resolution and high-throughput capabilities that are essential for performing such a measurement. Through proper selection of channel spectral regions, the FPI optimized for tropospheric O3 measurements can simultaneously observe a stratospheric component and thus the total O3 column abundance. We present a conceptual instrument design that involves a double-etalon fixed-gap series configuration FPI along with an ultranarrow bandpass filter to achieve single-order operation with an overall spectral resolution of approximately 0.068 cm-1, sampling the narrow 1054.2–1055.2 cm-1 spectral region within the strong 9.6-μm ozone infrared band from a nadir-viewing satellite configuration.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Chameides, P. S. Kasibhatla, J. Yienger, H. Levy, “Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production,” Science 264, 74–77 (1994).
    [CrossRef] [PubMed]
  2. W. E. Hogsett, J. E. Weber, D. Tingey, A. Herstrom, E. H. Lee, J. A. Laurence, “Environmental auditing: an approach for characterizing tropospheric ozone risk to forests,” Environ. Manage. 21, 105–120 (1997).
    [CrossRef] [PubMed]
  3. A. S. Lefohn, W. Jackson, D. S. Shadwick, H. P. Knudsen, “Effect of surface ozone exposures on vegetation grown in the southern Appalachian mountains: identification of possible areas of concern,” Atmos. Environ. 31, 1695–1708 (1997).
    [CrossRef]
  4. A. Volz, D. Kley, “Evaluation of the Montsouris series of ozone measurements made in the nineteenth century,” Nature (London) 332, 240–242 (1988).
    [CrossRef]
  5. J. Fishman, C. E. Watson, J. C. Larsen, J. A. Logan, “Distribution of tropospheric ozone determined from satellite data,” J. Geophys. Res. 95, 3599–3617 (1990).
    [CrossRef]
  6. J. Fishman, J. M. Hoell, R. D. Bendura, R. J. McNeal, V. W. J. H. Kirchhoff, “NASA GTE TRACE A experiment (September-October 1992): overview,” J. Geophys. Res. 101, 23865–23879 (1996).
    [CrossRef]
  7. W. B. Grant, ed., Ozone Measuring Instruments for the Stratosphere, Vol. 1 of OSA Collected Works in Optics Series (Optical Society of America, Washington, D.C., 1989).
  8. A. M. Larar, “The feasibility of tropospheric and total ozone determination using a Fabry-Perot interferometer as a satellite-based nadir-viewing atmospheric sensor,” Ph.D. dissertation (University of Michigan, Ann Arbor, Michigan, 1993).
  9. A. R. Bens, L. L. Cogger, G. G. Shepherd, “Upper atmospheric temperatures from Doppler line widths—III,” Planet. Space Sci. 13, 551–563 (1965).
    [CrossRef]
  10. T. D. Cocks, D. F. Creighton, F. Jacka, “Application of a dual Fabry-Perot spectrometer for daytime airglow studies,” J. Atmos. Terr. Phys. 42, 499–511 (1980).
    [CrossRef]
  11. J. E. Blamont, J. M. Luton, “Geomagnetic effect on the neutral temperature of the F region during the magnetic storm of September 1969,” J. Geophys. Res. 77, 3534–3556 (1972).
    [CrossRef]
  12. P. B. Hays, T. L. Killeen, B. C. Kennedy, “The Fabry-Perot interferometer on Dynamics Explorer,” Space Sci. Instrum. 5, 395–416 (1981).
  13. P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
    [CrossRef]
  14. A. E. Roche, J. B. Kumer, “Cryogenic limb array etalon spectrometer (CLAES): experiment overview,” in Cryogenic Optical Systems and Instruments III, R. K. Melugin, W. G. Pierce, eds., Proc. SPIE973, 324–334 (1989).
    [CrossRef]
  15. J. T. Houghton, “The meteorological significance of remote measurements of infra-red emission from atmospheric carbon dioxide,” Q. J. R. Meteorol. Soc. 87, 102–104 (1961).
    [CrossRef]
  16. J. Wang, “An investigation on the multiorder Fabry-Perot interferometer as a satellite-borne high resolution atmospheric sounder,” Ph.D. dissertation (University of Michigan, Ann Arbor, Michigan, 1990).
  17. W. R. Skinner, P. B. Hays, V. J. Abreu, “Optimization of a triple etalon interferometer,” Appl. Opt. 26, 2817–2827 (1987).
    [CrossRef] [PubMed]
  18. G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, New York, 1986).
  19. J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Institute of Physics, London, 1989).
  20. G. Hernandez, “Analytical description of a Fabry-Perot photoelectric spectrometer,” Appl. Opt. 5, 1745–1748 (1966).
    [CrossRef] [PubMed]
  21. F. Roesler, “Fabry-Perot instruments for astronomy,” in Methods of Experimental Physics, N. Carleton, ed. (Academic, New York, 1974) Part A, Vol. 12, pp. 531–568.
    [CrossRef]
  22. A. M. Larar, S. R. Drayson, “Global tropospheric and total ozone monitoring with a double-etalon Fabry–Perot interferometer. II. Feasibility analysis,” Appl. Opt. 37, 4732–4743 (1998).
    [CrossRef]
  23. P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990); “Circle-to-line interferometer optical system,” U.S. patent4,893,003 (9January1990).
  24. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 5th ed. (Pergamon, Oxford, U.K., 1975).
  25. J. E. Mack, D. P. McNutt, F. L. Roesler, R. Chabbal, “The PEPSIOS purely interferometric high-resolution scanning spectrometer. I. The pilot model,” Appl. Opt. 2, 873–884 (1963).
  26. J. G. Hirschberg, P. Platz, “A multichannel Fabry-Perot interferometer,” Appl. Opt. 4, 1375–1381 (1965).
    [CrossRef]
  27. D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A stable, rugged, capacitance-stabilized piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1328 (1981).
    [CrossRef]
  28. T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry-Perot interferometer,” Appl. Opt. 22, 3503–3513 (1983).
    [CrossRef] [PubMed]
  29. V. J. Abreu, W. R. Skinner, “Inversion of Fabry-Perot CCD images: use in Doppler shift measurements,” Appl. Opt. 28, 3382–3386 (1989).
    [CrossRef] [PubMed]
  30. P. B. Hays, J. Wang, “Image plane detector for Fabry-Perot interferometers: physical model and improvement with anticoincidence detection,” Appl. Opt. 30, 3100–3107 (1991).
    [CrossRef] [PubMed]
  31. S. R. Drayson, “Atmospheric transmission in the CO2 bands between 12μ and 18μ,” Appl. Opt. 5, 385–391 (1966).
    [CrossRef] [PubMed]
  32. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
    [CrossRef]
  33. W. Zhao, “Thermal infrared radiation transfer in the planetary boundary layer,” Ph.D. dissertation (University of Michigan, Ann Arbor, Michigan, 1992).
  34. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120-km),” Tech. Rep. AFGL-TR-86-0110 (Philips Laboratory, Hanscom Air Force Base, Mass., 1986).
  35. The mention of vendor names in this paper is for information purposes only and does not constitute an endorsement of these products by the authors or their institutions.
  36. F. L. Roesler, “Effects of plate defects in a polyetalon Fabry-Perot spectrometer,” Appl. Opt. 8, 829–831 (1969).
    [CrossRef] [PubMed]
  37. W. W. Gregg, P. E. Ardanuy, W. C. Braun, B. J. Vallette, “Analysis of Error in TOMS Total Ozone as a Function of Orbit and Attitude Parameters,” NASA Contractor Rep. 4361 (NASA, Goddard Space Flight Center, Greenbelt, Md., 1991).

1998

1997

W. E. Hogsett, J. E. Weber, D. Tingey, A. Herstrom, E. H. Lee, J. A. Laurence, “Environmental auditing: an approach for characterizing tropospheric ozone risk to forests,” Environ. Manage. 21, 105–120 (1997).
[CrossRef] [PubMed]

A. S. Lefohn, W. Jackson, D. S. Shadwick, H. P. Knudsen, “Effect of surface ozone exposures on vegetation grown in the southern Appalachian mountains: identification of possible areas of concern,” Atmos. Environ. 31, 1695–1708 (1997).
[CrossRef]

1996

J. Fishman, J. M. Hoell, R. D. Bendura, R. J. McNeal, V. W. J. H. Kirchhoff, “NASA GTE TRACE A experiment (September-October 1992): overview,” J. Geophys. Res. 101, 23865–23879 (1996).
[CrossRef]

1994

W. L. Chameides, P. S. Kasibhatla, J. Yienger, H. Levy, “Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production,” Science 264, 74–77 (1994).
[CrossRef] [PubMed]

1993

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

1992

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

1991

1990

P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990); “Circle-to-line interferometer optical system,” U.S. patent4,893,003 (9January1990).

J. Fishman, C. E. Watson, J. C. Larsen, J. A. Logan, “Distribution of tropospheric ozone determined from satellite data,” J. Geophys. Res. 95, 3599–3617 (1990).
[CrossRef]

1989

1988

A. Volz, D. Kley, “Evaluation of the Montsouris series of ozone measurements made in the nineteenth century,” Nature (London) 332, 240–242 (1988).
[CrossRef]

1987

1983

1981

P. B. Hays, T. L. Killeen, B. C. Kennedy, “The Fabry-Perot interferometer on Dynamics Explorer,” Space Sci. Instrum. 5, 395–416 (1981).

D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A stable, rugged, capacitance-stabilized piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1328 (1981).
[CrossRef]

1980

T. D. Cocks, D. F. Creighton, F. Jacka, “Application of a dual Fabry-Perot spectrometer for daytime airglow studies,” J. Atmos. Terr. Phys. 42, 499–511 (1980).
[CrossRef]

1972

J. E. Blamont, J. M. Luton, “Geomagnetic effect on the neutral temperature of the F region during the magnetic storm of September 1969,” J. Geophys. Res. 77, 3534–3556 (1972).
[CrossRef]

1969

1966

1965

A. R. Bens, L. L. Cogger, G. G. Shepherd, “Upper atmospheric temperatures from Doppler line widths—III,” Planet. Space Sci. 13, 551–563 (1965).
[CrossRef]

J. G. Hirschberg, P. Platz, “A multichannel Fabry-Perot interferometer,” Appl. Opt. 4, 1375–1381 (1965).
[CrossRef]

1963

1961

J. T. Houghton, “The meteorological significance of remote measurements of infra-red emission from atmospheric carbon dioxide,” Q. J. R. Meteorol. Soc. 87, 102–104 (1961).
[CrossRef]

Abreu, V. J.

Anderson, G. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120-km),” Tech. Rep. AFGL-TR-86-0110 (Philips Laboratory, Hanscom Air Force Base, Mass., 1986).

Ardanuy, P. E.

W. W. Gregg, P. E. Ardanuy, W. C. Braun, B. J. Vallette, “Analysis of Error in TOMS Total Ozone as a Function of Orbit and Attitude Parameters,” NASA Contractor Rep. 4361 (NASA, Goddard Space Flight Center, Greenbelt, Md., 1991).

Bendura, R. D.

J. Fishman, J. M. Hoell, R. D. Bendura, R. J. McNeal, V. W. J. H. Kirchhoff, “NASA GTE TRACE A experiment (September-October 1992): overview,” J. Geophys. Res. 101, 23865–23879 (1996).
[CrossRef]

Bens, A. R.

A. R. Bens, L. L. Cogger, G. G. Shepherd, “Upper atmospheric temperatures from Doppler line widths—III,” Planet. Space Sci. 13, 551–563 (1965).
[CrossRef]

Blamont, J. E.

J. E. Blamont, J. M. Luton, “Geomagnetic effect on the neutral temperature of the F region during the magnetic storm of September 1969,” J. Geophys. Res. 77, 3534–3556 (1972).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 5th ed. (Pergamon, Oxford, U.K., 1975).

Braun, W. C.

W. W. Gregg, P. E. Ardanuy, W. C. Braun, B. J. Vallette, “Analysis of Error in TOMS Total Ozone as a Function of Orbit and Attitude Parameters,” NASA Contractor Rep. 4361 (NASA, Goddard Space Flight Center, Greenbelt, Md., 1991).

Ceckowski, D. H.

Chabbal, R.

Chameides, W. L.

W. L. Chameides, P. S. Kasibhatla, J. Yienger, H. Levy, “Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production,” Science 264, 74–77 (1994).
[CrossRef] [PubMed]

Chetwynd, J. H.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120-km),” Tech. Rep. AFGL-TR-86-0110 (Philips Laboratory, Hanscom Air Force Base, Mass., 1986).

Clough, S. A.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120-km),” Tech. Rep. AFGL-TR-86-0110 (Philips Laboratory, Hanscom Air Force Base, Mass., 1986).

Cocks, T. D.

T. D. Cocks, D. F. Creighton, F. Jacka, “Application of a dual Fabry-Perot spectrometer for daytime airglow studies,” J. Atmos. Terr. Phys. 42, 499–511 (1980).
[CrossRef]

Cogger, L. L.

A. R. Bens, L. L. Cogger, G. G. Shepherd, “Upper atmospheric temperatures from Doppler line widths—III,” Planet. Space Sci. 13, 551–563 (1965).
[CrossRef]

Creighton, D. F.

T. D. Cocks, D. F. Creighton, F. Jacka, “Application of a dual Fabry-Perot spectrometer for daytime airglow studies,” J. Atmos. Terr. Phys. 42, 499–511 (1980).
[CrossRef]

Dines, T.

D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A stable, rugged, capacitance-stabilized piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1328 (1981).
[CrossRef]

Dobbs, M. E.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Drayson, S. R.

Fishman, J.

J. Fishman, J. M. Hoell, R. D. Bendura, R. J. McNeal, V. W. J. H. Kirchhoff, “NASA GTE TRACE A experiment (September-October 1992): overview,” J. Geophys. Res. 101, 23865–23879 (1996).
[CrossRef]

J. Fishman, C. E. Watson, J. C. Larsen, J. A. Logan, “Distribution of tropospheric ozone determined from satellite data,” J. Geophys. Res. 95, 3599–3617 (1990).
[CrossRef]

Gamache, R. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Gell, D. A.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Grant, W. B.

W. B. Grant, ed., Ozone Measuring Instruments for the Stratosphere, Vol. 1 of OSA Collected Works in Optics Series (Optical Society of America, Washington, D.C., 1989).

Grassl, H. J.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

Gregg, W. W.

W. W. Gregg, P. E. Ardanuy, W. C. Braun, B. J. Vallette, “Analysis of Error in TOMS Total Ozone as a Function of Orbit and Attitude Parameters,” NASA Contractor Rep. 4361 (NASA, Goddard Space Flight Center, Greenbelt, Md., 1991).

Hays, P. B.

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

P. B. Hays, J. Wang, “Image plane detector for Fabry-Perot interferometers: physical model and improvement with anticoincidence detection,” Appl. Opt. 30, 3100–3107 (1991).
[CrossRef] [PubMed]

P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990); “Circle-to-line interferometer optical system,” U.S. patent4,893,003 (9January1990).

W. R. Skinner, P. B. Hays, V. J. Abreu, “Optimization of a triple etalon interferometer,” Appl. Opt. 26, 2817–2827 (1987).
[CrossRef] [PubMed]

T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry-Perot interferometer,” Appl. Opt. 22, 3503–3513 (1983).
[CrossRef] [PubMed]

D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A stable, rugged, capacitance-stabilized piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1328 (1981).
[CrossRef]

P. B. Hays, T. L. Killeen, B. C. Kennedy, “The Fabry-Perot interferometer on Dynamics Explorer,” Space Sci. Instrum. 5, 395–416 (1981).

Hernandez, G.

Herstrom, A.

W. E. Hogsett, J. E. Weber, D. Tingey, A. Herstrom, E. H. Lee, J. A. Laurence, “Environmental auditing: an approach for characterizing tropospheric ozone risk to forests,” Environ. Manage. 21, 105–120 (1997).
[CrossRef] [PubMed]

Hirschberg, J. G.

Hoell, J. M.

J. Fishman, J. M. Hoell, R. D. Bendura, R. J. McNeal, V. W. J. H. Kirchhoff, “NASA GTE TRACE A experiment (September-October 1992): overview,” J. Geophys. Res. 101, 23865–23879 (1996).
[CrossRef]

Hogsett, W. E.

W. E. Hogsett, J. E. Weber, D. Tingey, A. Herstrom, E. H. Lee, J. A. Laurence, “Environmental auditing: an approach for characterizing tropospheric ozone risk to forests,” Environ. Manage. 21, 105–120 (1997).
[CrossRef] [PubMed]

Houghton, J. T.

J. T. Houghton, “The meteorological significance of remote measurements of infra-red emission from atmospheric carbon dioxide,” Q. J. R. Meteorol. Soc. 87, 102–104 (1961).
[CrossRef]

Jacka, F.

T. D. Cocks, D. F. Creighton, F. Jacka, “Application of a dual Fabry-Perot spectrometer for daytime airglow studies,” J. Atmos. Terr. Phys. 42, 499–511 (1980).
[CrossRef]

Jackson, W.

A. S. Lefohn, W. Jackson, D. S. Shadwick, H. P. Knudsen, “Effect of surface ozone exposures on vegetation grown in the southern Appalachian mountains: identification of possible areas of concern,” Atmos. Environ. 31, 1695–1708 (1997).
[CrossRef]

Kasibhatla, P. S.

W. L. Chameides, P. S. Kasibhatla, J. Yienger, H. Levy, “Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production,” Science 264, 74–77 (1994).
[CrossRef] [PubMed]

Kennedy, B. C.

T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry-Perot interferometer,” Appl. Opt. 22, 3503–3513 (1983).
[CrossRef] [PubMed]

P. B. Hays, T. L. Killeen, B. C. Kennedy, “The Fabry-Perot interferometer on Dynamics Explorer,” Space Sci. Instrum. 5, 395–416 (1981).

Killeen, T. L.

T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry-Perot interferometer,” Appl. Opt. 22, 3503–3513 (1983).
[CrossRef] [PubMed]

P. B. Hays, T. L. Killeen, B. C. Kennedy, “The Fabry-Perot interferometer on Dynamics Explorer,” Space Sci. Instrum. 5, 395–416 (1981).

Kirchhoff, V. W. J. H.

J. Fishman, J. M. Hoell, R. D. Bendura, R. J. McNeal, V. W. J. H. Kirchhoff, “NASA GTE TRACE A experiment (September-October 1992): overview,” J. Geophys. Res. 101, 23865–23879 (1996).
[CrossRef]

Kley, D.

A. Volz, D. Kley, “Evaluation of the Montsouris series of ozone measurements made in the nineteenth century,” Nature (London) 332, 240–242 (1988).
[CrossRef]

Kneizys, F. X.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120-km),” Tech. Rep. AFGL-TR-86-0110 (Philips Laboratory, Hanscom Air Force Base, Mass., 1986).

Knudsen, H. P.

A. S. Lefohn, W. Jackson, D. S. Shadwick, H. P. Knudsen, “Effect of surface ozone exposures on vegetation grown in the southern Appalachian mountains: identification of possible areas of concern,” Atmos. Environ. 31, 1695–1708 (1997).
[CrossRef]

Kumer, J. B.

A. E. Roche, J. B. Kumer, “Cryogenic limb array etalon spectrometer (CLAES): experiment overview,” in Cryogenic Optical Systems and Instruments III, R. K. Melugin, W. G. Pierce, eds., Proc. SPIE973, 324–334 (1989).
[CrossRef]

Larar, A. M.

A. M. Larar, S. R. Drayson, “Global tropospheric and total ozone monitoring with a double-etalon Fabry–Perot interferometer. II. Feasibility analysis,” Appl. Opt. 37, 4732–4743 (1998).
[CrossRef]

A. M. Larar, “The feasibility of tropospheric and total ozone determination using a Fabry-Perot interferometer as a satellite-based nadir-viewing atmospheric sensor,” Ph.D. dissertation (University of Michigan, Ann Arbor, Michigan, 1993).

Larsen, J. C.

J. Fishman, C. E. Watson, J. C. Larsen, J. A. Logan, “Distribution of tropospheric ozone determined from satellite data,” J. Geophys. Res. 95, 3599–3617 (1990).
[CrossRef]

Laurence, J. A.

W. E. Hogsett, J. E. Weber, D. Tingey, A. Herstrom, E. H. Lee, J. A. Laurence, “Environmental auditing: an approach for characterizing tropospheric ozone risk to forests,” Environ. Manage. 21, 105–120 (1997).
[CrossRef] [PubMed]

Lee, E. H.

W. E. Hogsett, J. E. Weber, D. Tingey, A. Herstrom, E. H. Lee, J. A. Laurence, “Environmental auditing: an approach for characterizing tropospheric ozone risk to forests,” Environ. Manage. 21, 105–120 (1997).
[CrossRef] [PubMed]

Lefohn, A. S.

A. S. Lefohn, W. Jackson, D. S. Shadwick, H. P. Knudsen, “Effect of surface ozone exposures on vegetation grown in the southern Appalachian mountains: identification of possible areas of concern,” Atmos. Environ. 31, 1695–1708 (1997).
[CrossRef]

Levy, H.

W. L. Chameides, P. S. Kasibhatla, J. Yienger, H. Levy, “Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production,” Science 264, 74–77 (1994).
[CrossRef] [PubMed]

Logan, J. A.

J. Fishman, C. E. Watson, J. C. Larsen, J. A. Logan, “Distribution of tropospheric ozone determined from satellite data,” J. Geophys. Res. 95, 3599–3617 (1990).
[CrossRef]

Luton, J. M.

J. E. Blamont, J. M. Luton, “Geomagnetic effect on the neutral temperature of the F region during the magnetic storm of September 1969,” J. Geophys. Res. 77, 3534–3556 (1972).
[CrossRef]

Mack, J. E.

McNeal, R. J.

J. Fishman, J. M. Hoell, R. D. Bendura, R. J. McNeal, V. W. J. H. Kirchhoff, “NASA GTE TRACE A experiment (September-October 1992): overview,” J. Geophys. Res. 101, 23865–23879 (1996).
[CrossRef]

McNutt, D. P.

McWhirter, I.

D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A stable, rugged, capacitance-stabilized piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1328 (1981).
[CrossRef]

Platz, P.

Rees, D.

D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A stable, rugged, capacitance-stabilized piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1328 (1981).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Roche, A. E.

A. E. Roche, J. B. Kumer, “Cryogenic limb array etalon spectrometer (CLAES): experiment overview,” in Cryogenic Optical Systems and Instruments III, R. K. Melugin, W. G. Pierce, eds., Proc. SPIE973, 324–334 (1989).
[CrossRef]

Roesler, F.

F. Roesler, “Fabry-Perot instruments for astronomy,” in Methods of Experimental Physics, N. Carleton, ed. (Academic, New York, 1974) Part A, Vol. 12, pp. 531–568.
[CrossRef]

Roesler, F. L.

Rothman, L. S.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Shadwick, D. S.

A. S. Lefohn, W. Jackson, D. S. Shadwick, H. P. Knudsen, “Effect of surface ozone exposures on vegetation grown in the southern Appalachian mountains: identification of possible areas of concern,” Atmos. Environ. 31, 1695–1708 (1997).
[CrossRef]

Shepherd, G. G.

A. R. Bens, L. L. Cogger, G. G. Shepherd, “Upper atmospheric temperatures from Doppler line widths—III,” Planet. Space Sci. 13, 551–563 (1965).
[CrossRef]

Shettle, E. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120-km),” Tech. Rep. AFGL-TR-86-0110 (Philips Laboratory, Hanscom Air Force Base, Mass., 1986).

Skinner, W. R.

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Symanow, D. A.

Tingey, D.

W. E. Hogsett, J. E. Weber, D. Tingey, A. Herstrom, E. H. Lee, J. A. Laurence, “Environmental auditing: an approach for characterizing tropospheric ozone risk to forests,” Environ. Manage. 21, 105–120 (1997).
[CrossRef] [PubMed]

Tipping, R. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Vallette, B. J.

W. W. Gregg, P. E. Ardanuy, W. C. Braun, B. J. Vallette, “Analysis of Error in TOMS Total Ozone as a Function of Orbit and Attitude Parameters,” NASA Contractor Rep. 4361 (NASA, Goddard Space Flight Center, Greenbelt, Md., 1991).

Vaughan, J. M.

J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Institute of Physics, London, 1989).

Volz, A.

A. Volz, D. Kley, “Evaluation of the Montsouris series of ozone measurements made in the nineteenth century,” Nature (London) 332, 240–242 (1988).
[CrossRef]

Wang, J.

P. B. Hays, J. Wang, “Image plane detector for Fabry-Perot interferometers: physical model and improvement with anticoincidence detection,” Appl. Opt. 30, 3100–3107 (1991).
[CrossRef] [PubMed]

J. Wang, “An investigation on the multiorder Fabry-Perot interferometer as a satellite-borne high resolution atmospheric sounder,” Ph.D. dissertation (University of Michigan, Ann Arbor, Michigan, 1990).

Watson, C. E.

J. Fishman, C. E. Watson, J. C. Larsen, J. A. Logan, “Distribution of tropospheric ozone determined from satellite data,” J. Geophys. Res. 95, 3599–3617 (1990).
[CrossRef]

Weber, J. E.

W. E. Hogsett, J. E. Weber, D. Tingey, A. Herstrom, E. H. Lee, J. A. Laurence, “Environmental auditing: an approach for characterizing tropospheric ozone risk to forests,” Environ. Manage. 21, 105–120 (1997).
[CrossRef] [PubMed]

Wolf, E.

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 5th ed. (Pergamon, Oxford, U.K., 1975).

Yienger, J.

W. L. Chameides, P. S. Kasibhatla, J. Yienger, H. Levy, “Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production,” Science 264, 74–77 (1994).
[CrossRef] [PubMed]

Zhao, W.

W. Zhao, “Thermal infrared radiation transfer in the planetary boundary layer,” Ph.D. dissertation (University of Michigan, Ann Arbor, Michigan, 1992).

Appl. Opt.

J. E. Mack, D. P. McNutt, F. L. Roesler, R. Chabbal, “The PEPSIOS purely interferometric high-resolution scanning spectrometer. I. The pilot model,” Appl. Opt. 2, 873–884 (1963).

J. G. Hirschberg, P. Platz, “A multichannel Fabry-Perot interferometer,” Appl. Opt. 4, 1375–1381 (1965).
[CrossRef]

S. R. Drayson, “Atmospheric transmission in the CO2 bands between 12μ and 18μ,” Appl. Opt. 5, 385–391 (1966).
[CrossRef] [PubMed]

G. Hernandez, “Analytical description of a Fabry-Perot photoelectric spectrometer,” Appl. Opt. 5, 1745–1748 (1966).
[CrossRef] [PubMed]

T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry-Perot interferometer,” Appl. Opt. 22, 3503–3513 (1983).
[CrossRef] [PubMed]

W. R. Skinner, P. B. Hays, V. J. Abreu, “Optimization of a triple etalon interferometer,” Appl. Opt. 26, 2817–2827 (1987).
[CrossRef] [PubMed]

V. J. Abreu, W. R. Skinner, “Inversion of Fabry-Perot CCD images: use in Doppler shift measurements,” Appl. Opt. 28, 3382–3386 (1989).
[CrossRef] [PubMed]

P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990); “Circle-to-line interferometer optical system,” U.S. patent4,893,003 (9January1990).

P. B. Hays, J. Wang, “Image plane detector for Fabry-Perot interferometers: physical model and improvement with anticoincidence detection,” Appl. Opt. 30, 3100–3107 (1991).
[CrossRef] [PubMed]

A. M. Larar, S. R. Drayson, “Global tropospheric and total ozone monitoring with a double-etalon Fabry–Perot interferometer. II. Feasibility analysis,” Appl. Opt. 37, 4732–4743 (1998).
[CrossRef]

F. L. Roesler, “Effects of plate defects in a polyetalon Fabry-Perot spectrometer,” Appl. Opt. 8, 829–831 (1969).
[CrossRef] [PubMed]

Atmos. Environ.

A. S. Lefohn, W. Jackson, D. S. Shadwick, H. P. Knudsen, “Effect of surface ozone exposures on vegetation grown in the southern Appalachian mountains: identification of possible areas of concern,” Atmos. Environ. 31, 1695–1708 (1997).
[CrossRef]

Environ. Manage.

W. E. Hogsett, J. E. Weber, D. Tingey, A. Herstrom, E. H. Lee, J. A. Laurence, “Environmental auditing: an approach for characterizing tropospheric ozone risk to forests,” Environ. Manage. 21, 105–120 (1997).
[CrossRef] [PubMed]

J. Atmos. Terr. Phys.

T. D. Cocks, D. F. Creighton, F. Jacka, “Application of a dual Fabry-Perot spectrometer for daytime airglow studies,” J. Atmos. Terr. Phys. 42, 499–511 (1980).
[CrossRef]

J. Geophys. Res.

J. E. Blamont, J. M. Luton, “Geomagnetic effect on the neutral temperature of the F region during the magnetic storm of September 1969,” J. Geophys. Res. 77, 3534–3556 (1972).
[CrossRef]

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
[CrossRef]

J. Fishman, C. E. Watson, J. C. Larsen, J. A. Logan, “Distribution of tropospheric ozone determined from satellite data,” J. Geophys. Res. 95, 3599–3617 (1990).
[CrossRef]

J. Fishman, J. M. Hoell, R. D. Bendura, R. J. McNeal, V. W. J. H. Kirchhoff, “NASA GTE TRACE A experiment (September-October 1992): overview,” J. Geophys. Res. 101, 23865–23879 (1996).
[CrossRef]

J. Phys. E

D. Rees, I. McWhirter, P. B. Hays, T. Dines, “A stable, rugged, capacitance-stabilized piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1328 (1981).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
[CrossRef]

Nature (London)

A. Volz, D. Kley, “Evaluation of the Montsouris series of ozone measurements made in the nineteenth century,” Nature (London) 332, 240–242 (1988).
[CrossRef]

Planet. Space Sci.

A. R. Bens, L. L. Cogger, G. G. Shepherd, “Upper atmospheric temperatures from Doppler line widths—III,” Planet. Space Sci. 13, 551–563 (1965).
[CrossRef]

Q. J. R. Meteorol. Soc.

J. T. Houghton, “The meteorological significance of remote measurements of infra-red emission from atmospheric carbon dioxide,” Q. J. R. Meteorol. Soc. 87, 102–104 (1961).
[CrossRef]

Science

W. L. Chameides, P. S. Kasibhatla, J. Yienger, H. Levy, “Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production,” Science 264, 74–77 (1994).
[CrossRef] [PubMed]

Space Sci. Instrum.

P. B. Hays, T. L. Killeen, B. C. Kennedy, “The Fabry-Perot interferometer on Dynamics Explorer,” Space Sci. Instrum. 5, 395–416 (1981).

Other

A. E. Roche, J. B. Kumer, “Cryogenic limb array etalon spectrometer (CLAES): experiment overview,” in Cryogenic Optical Systems and Instruments III, R. K. Melugin, W. G. Pierce, eds., Proc. SPIE973, 324–334 (1989).
[CrossRef]

J. Wang, “An investigation on the multiorder Fabry-Perot interferometer as a satellite-borne high resolution atmospheric sounder,” Ph.D. dissertation (University of Michigan, Ann Arbor, Michigan, 1990).

G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, New York, 1986).

J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Institute of Physics, London, 1989).

F. Roesler, “Fabry-Perot instruments for astronomy,” in Methods of Experimental Physics, N. Carleton, ed. (Academic, New York, 1974) Part A, Vol. 12, pp. 531–568.
[CrossRef]

W. B. Grant, ed., Ozone Measuring Instruments for the Stratosphere, Vol. 1 of OSA Collected Works in Optics Series (Optical Society of America, Washington, D.C., 1989).

A. M. Larar, “The feasibility of tropospheric and total ozone determination using a Fabry-Perot interferometer as a satellite-based nadir-viewing atmospheric sensor,” Ph.D. dissertation (University of Michigan, Ann Arbor, Michigan, 1993).

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 5th ed. (Pergamon, Oxford, U.K., 1975).

W. Zhao, “Thermal infrared radiation transfer in the planetary boundary layer,” Ph.D. dissertation (University of Michigan, Ann Arbor, Michigan, 1992).

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120-km),” Tech. Rep. AFGL-TR-86-0110 (Philips Laboratory, Hanscom Air Force Base, Mass., 1986).

The mention of vendor names in this paper is for information purposes only and does not constitute an endorsement of these products by the authors or their institutions.

W. W. Gregg, P. E. Ardanuy, W. C. Braun, B. J. Vallette, “Analysis of Error in TOMS Total Ozone as a Function of Orbit and Attitude Parameters,” NASA Contractor Rep. 4361 (NASA, Goddard Space Flight Center, Greenbelt, Md., 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Simple double-etalon series configuration. The transmission through the attenuating medium is defined as τ m , whereas the etalon transmittances and reflectances are denoted by E i and ρ i , respectively.

Fig. 2
Fig. 2

Transmission through a double-etalon system. (a) Shows transmittance through the system including interetalon reflections for several loss values τ m of the intermediate medium. The solid curve represents the transmission ignoring reflections and without any intermediate attenuation (i.e., τ m = 1). (b) Illustrates the minimum achievable transmittance within 1 order of the HRE central order as a function of τ m , with and without the inclusion of interetalon reflections.

Fig. 3
Fig. 3

Schematic diagram summarizing the formation of a double-etalon instrument transfer function from the Airy ( A ), defect (D), aperture (L), and bandpass filter (T F ) functions. The loss factor of an attenuating medium (τ m ) is included to reduce the impact of interetalon reflections. The Airy functions simulated correspond to an etalon plate spacer ratio of t 1/t 2 = 1.5. All plots shown except those for the defect and aperture functions correspond to normalized transmission functions having the same horizontal and vertical scales. However, the defect and aperture functions are plotted with an abscissa having one seventh the range of the abscissa scale used in the other plots; this was done to better illustrate their functional forms.

Fig. 4
Fig. 4

Schematic diagram of the CLIO system optical configuration used to convert a circular Fabry–Perot fringe pattern into a linear pattern along the axis of a 45-deg half-angle internally reflecting transforming cone.

Fig. 5
Fig. 5

Effect of atmospheric ozone perturbations on upwelling radiance within the 9.6-μm band region. (a) Corresponds to a 10% increase in tropospheric ozone, and (b) is representative of a 1% increase in stratospheric ozone.

Fig. 6
Fig. 6

White light transmitted through a double-etalon Fabry–Perot system as a function of FSR ratios. An ultranarrow bandpass filter of Gaussian shape is included. A medium with transmission equal to 0.95 is assumed to be in between the etalons to reduce the effect of incoherent reflections.

Fig. 7
Fig. 7

Instrument transmission functions: ultranarrow bandpass filter function (T F ), broadened double-etalon transmission function (T D ), and overall instrument transfer function of the central wave number (T F T D ) for a FPI with the chosen specifications.

Fig. 8
Fig. 8

Upwelling radiance reaching and received by the instrument within a narrow spectral interval containing the selected band region.

Fig. 9
Fig. 9

O3 ECF’s and how they are affected from including interfering species for the instrument band spectral region. (a) Shows O3 ECF’s for an O3-only atmosphere in units of mW/(m2 sr cm-1). (b) Illustrates percent change in O3 ECF’s from including interfering species. (c) Shows the change in measured signal induced from including interfering species. Note that the channel locations (depicted with open boxes) attempt to minimize the impact from the CO2 (≈1053.92- and 1055.63-cm-1) and H2O (≈1055.52-cm-1) spectral lines and their associated wing effects.

Fig. 10
Fig. 10

O3 ECF’s and how they are affected from including interfering species for two selected channels: near line center and in the wings of strong lines. (a) shows O3 ECF’s (normalized to their respective maximum values). (b) Illustrates percent change in O3 ECF’s from including interfering species.

Fig. 11
Fig. 11

Results from a SNR analysis with the 1976 U.S. Standard Atmosphere, with spectral locations for channels indicated by asterisks. (a) Shows the minimum D* required to achieve a SNR of 100, whereas (b) indicates the achievable SNR for a reasonable choice of D*.

Tables (1)

Tables Icon

Table 1 Double-Etalon Instrument Design Specifications

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

A Ψ = 1 - R 2 1 - 2 R   cos   Ψ + R 2 ,
I = I 0 E 1 E 2 τ m 1 + τ m 2 ρ 1 ρ 2 + τ m 4 ρ 1 2 ρ 2 2 + .
E D = E 1 E 2 τ m 1 + i = 1 τ m 2 ρ 1 ρ 2 i = E 1 E 2 τ m i = 0 τ m 2 ρ 1 ρ 2 i .
E D = E 1 E 2 τ m 1 - τ m 2 ρ 1 ρ 2 .
T D Ψ = E D Ψ * L Ψ .
I ν ,   θ = s ν ,   θ B ν ,   T s τ ν ,   θ ,   p s + ln   p s -   B ν ,   T p τ ν ,   θ ,   p   ln   p d   ln   p ,
δ F E = ν FSR N E ,
1 N E 2 = 1 N R 2 + 1 N D 2 + 1 N L 2 ,
W = 0   T F ν T D ν d ν - ν 0 - HRE ν FSR 2 ν 0 + HRE ν FSR 2   T F ν T D ν d ν ν 0 - HRE ν FSR 2 ν 0 + HRE ν FSR 2   T F ν T D ν d ν ,
S ν ,   θ = 0   f inst ν - ν I ν ,   θ d ν .
S ν = ν low ν high   T D ν - ν T F ν I ν d ν
S N ν = ν low ν high   T D ν - ν T F ν I ν d ν ν low ν high   T D ν - ν T F ν d ν
C ν ,   p = ν low ν high   T D ν - ν T F ν B ν ,   T p τ ν ,   p   ln   p d ν ν low ν high   T D ν - ν T F ν d ν .
Δ C ν ,   p | O 3 = C ν ,   p | all   species - C ν ,   p | O 3   only C ν ,   p | O 3   only .
SNR ν = D * τ i A d ν π   sin 2 π 4 β A d ν 5 2 π t d 1 / 2 × ν low ν high   T D ν - ν T F ν I ν d ν ,

Metrics