Abstract

A multichannel spectroscopic ellipsometer in the fixed-polarizer–sample–rotating-compensator–fixed-analyzer (PSCRA) configuration has been developed and applied for real-time characterization of the nucleation and growth of thin films on transparent substrates. This rotating-compensator design overcomes the major disadvantages of the multichannel ellipsometer in the rotating-polarizer–sample–fixed-analyzer (PRSA) configuration while retaining its high speed and precision for the characterization of thin-film processes in real time. The advantages of the PSCRA configuration include (i) its high accuracy and precision for the detection of low-ellipticity polarization states that are generated upon reflection of linearly polarized light from transparent film–substrate systems, and (ii) the ability to characterize depolarization of the reflected light, an effect that leads to errors in ellipticity when measured with the PRSA configuration. A comparison of the index of refraction spectra for a glass substrate obtained in the real-time PSCRA mode in 2.5 s and in the ex situ fixed-polarizer–fixed-compensator–sample–rotating-analyzer (PCSAR) mode in ∼10 min show excellent agreement, with a standard deviation between the two data sets of 8 × 10-4, computed over the photon energy range from 1.5 to 3.5 eV. First, we describe the PSCRA ellipsometer calibration procedures developed specifically for transparent substrates. In addition, we describe the application of the multichannel PSCRA instrument for a study of thin-film diamond nucleation and growth on glass in a low-temperature microwave plasma-enhanced chemical vapor deposition process.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Aspnes, “The accurate determination of optical properties by ellipsometry,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1985), pp. 89–112.
  2. P. Chindaudom, K. Vedam, “Optical characterization of inhomogeneous transparent films on transparent substrates by spectroscopic ellipsometry,” in Optical Characterization of Real Films and Surfaces, K. Vedam, ed. (Academic, New York, 1994), pp. 191–247.
  3. H. J. Mathieu, D. E. McClure, R. H. Muller, “Fast self-compensating ellipsometer,” Rev. Sci. Instrum. 45, 798–802 (1974).
    [CrossRef]
  4. G. E. Jellison, B. C. Sales, “Determination of the optical functions of transparent glasses by using spectroscopic ellipsometry,” Appl. Opt. 30, 4310–4315 (1991).
    [CrossRef] [PubMed]
  5. R. W. Collins, “Automatic rotating element ellipsometers: Calibration, operation, and real-time applications,” Rev. Sci. Instrum. 61, 2029–2062 (1990).
    [CrossRef]
  6. I. An, Y. M. Li, H. V. Nguyen, R. W. Collins, “Spectroscopic ellipsometry on the millisecond time scale for real time investigations of thin film and surface phenomena,” Rev. Sci. Instrum. 63, 3842–3848 (1992).
    [CrossRef]
  7. R. H. Muller, J. C. Farmer, “Fast self-compensating spectral-scanning ellipsometer,” Rev. Sci. Instrum. 55, 371–374 (1984).
    [CrossRef]
  8. S. A. Henck, W. M. Duncan, L. M. Lowenstein, S. W. Butler, “In situ spectral ellipsometry for real time thickness measurement: Etching multilayer stacks,” J. Vac. Sci. Technol. A 11, 1179–1185 (1993).
    [CrossRef]
  9. P. S. Hauge, F. H. Dill, “A rotating-compensator Fourier ellipsometer,” Opt. Commun. 14, 431–437 (1975).
    [CrossRef]
  10. P. S. Hauge, “Generalized rotating-compensator ellipsometry,” Surf. Sci. 56, 148–160 (1976).
    [CrossRef]
  11. D. E. Aspnes, “Photometric ellipsometer for measuring partially polarized light,” J. Opt. Soc. Am. 65, 1274–1278 (1975).
    [CrossRef]
  12. D. E. Aspnes, “A photometric ellipsometer for measuring flux in a general state of polarization,” Surf. Sci. 56, 161–169 (1976).
    [CrossRef]
  13. G. E. Jellison, J. W. McCamy, “Sample depolarization effects from thin films of ZnS on GaAs as measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 61, 512–514 (1992).
    [CrossRef]
  14. J. Lee, P. I. Rovira, I. An, R. W. Collins, “Rotating-compensator multichannel ellipsometry for characterization of the evolution of non-uniformities in diamond thin film growth,” Appl. Phys. Lett. 72, 900–902 (1998).
    [CrossRef]
  15. B. Hong, “Development of real-time spectroscopic ellipsometry and its application to the growth of diamond thin films by microwave plasma-enhanced chemical vapor deposition,” Ph.D. dissertation (The Pennsylvania State University, University Park, Pa, 1996).
  16. J. M. Bennett, H. E. Bennett, “Polarization,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, eds. (McGraw-Hill, New York, 1978), pp. 10-1–10-164.
  17. R. A. Yarussi, A. R. Heyd, H. V. Nguyen, R. W. Collins, “Multichannel transmission ellipsometer for characterization of anisotropic optical materials,” J. Opt. Soc. Am. A 11, 2320–2330 (1994).
    [CrossRef]
  18. J. M. M. de Nijs, A. H. M. Holtslag, A. Hoeksta, A. van Silfhout, “Calibration method for rotating-analyzer ellipsometers,” J. Opt. Soc. Am. A 5, 1466–1471 (1988).
    [CrossRef]
  19. N. V. Nguyen, B. S. Pudliner, I. An, R. W. Collins, “Error correction for calibration and data reduction in rotating polarizer ellipsometry: Applications to a novel multichannel ellipsometer,” J. Opt. Soc. Am. A 8, 919–931 (1991).
    [CrossRef]
  20. D. E. Aspnes, “Effects of component optical activity in data reduction and calibration of rotating-analyzer ellipsometers,” J. Opt. Soc. Am. 64, 812–819 (1974).
    [CrossRef]
  21. J. Lee, P. I. Rovira, I. An, R. W. Collins, “Rotating-compensator multichannel ellipsometry: Applications for real time Stokes vector spectroscopy of thin film growth,” Rev. Sci. Instrum. 69, 1800–1810 (1998).
    [CrossRef]
  22. I. An, R. W. Collins, “Waveform analysis with optical multichannel detectors: Applications for rapid-scan spectroscopic ellipsometry,” Rev. Sci. Instrum. 62, 1904–1911 (1991).
    [CrossRef]
  23. B. Hong, J. Lee, R. W. Collins, Y. Kuang, T. T. Tsong, W. Drawl, R. Messier, Y. E. Strausser, “Effects of processing conditions on the growth of nanocrystalline diamond thin films: Real time spectroscopic ellipsometry studies,” Diam. Relat. Mater. 6, 55–80 (1997).
    [CrossRef]
  24. S. Iijima, Y. Aikawa, K. Baba, “Early formation of chemical vapor deposition diamond films,” Appl. Phys. Lett. 57, 2646–2648 (1990).
    [CrossRef]
  25. J. Lee, R. W. Collins, B. Hong, R. Messier, Y. E. Strausser, “Analysis of the growth processes of plasma-enhanced chemical vapor deposited diamond films from CO/H2 and CH4/H2 mixtures using real time spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 15, 1929–1936 (1997).
    [CrossRef]
  26. J. Robertson, E. P. O’Reilly, “Electronic structure of amorphous carbon,” Phys. Rev. B 35, 2946–2957 (1987).
    [CrossRef]

1998 (2)

J. Lee, P. I. Rovira, I. An, R. W. Collins, “Rotating-compensator multichannel ellipsometry for characterization of the evolution of non-uniformities in diamond thin film growth,” Appl. Phys. Lett. 72, 900–902 (1998).
[CrossRef]

J. Lee, P. I. Rovira, I. An, R. W. Collins, “Rotating-compensator multichannel ellipsometry: Applications for real time Stokes vector spectroscopy of thin film growth,” Rev. Sci. Instrum. 69, 1800–1810 (1998).
[CrossRef]

1997 (2)

B. Hong, J. Lee, R. W. Collins, Y. Kuang, T. T. Tsong, W. Drawl, R. Messier, Y. E. Strausser, “Effects of processing conditions on the growth of nanocrystalline diamond thin films: Real time spectroscopic ellipsometry studies,” Diam. Relat. Mater. 6, 55–80 (1997).
[CrossRef]

J. Lee, R. W. Collins, B. Hong, R. Messier, Y. E. Strausser, “Analysis of the growth processes of plasma-enhanced chemical vapor deposited diamond films from CO/H2 and CH4/H2 mixtures using real time spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 15, 1929–1936 (1997).
[CrossRef]

1994 (1)

1993 (1)

S. A. Henck, W. M. Duncan, L. M. Lowenstein, S. W. Butler, “In situ spectral ellipsometry for real time thickness measurement: Etching multilayer stacks,” J. Vac. Sci. Technol. A 11, 1179–1185 (1993).
[CrossRef]

1992 (2)

I. An, Y. M. Li, H. V. Nguyen, R. W. Collins, “Spectroscopic ellipsometry on the millisecond time scale for real time investigations of thin film and surface phenomena,” Rev. Sci. Instrum. 63, 3842–3848 (1992).
[CrossRef]

G. E. Jellison, J. W. McCamy, “Sample depolarization effects from thin films of ZnS on GaAs as measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 61, 512–514 (1992).
[CrossRef]

1991 (3)

1990 (2)

R. W. Collins, “Automatic rotating element ellipsometers: Calibration, operation, and real-time applications,” Rev. Sci. Instrum. 61, 2029–2062 (1990).
[CrossRef]

S. Iijima, Y. Aikawa, K. Baba, “Early formation of chemical vapor deposition diamond films,” Appl. Phys. Lett. 57, 2646–2648 (1990).
[CrossRef]

1988 (1)

1987 (1)

J. Robertson, E. P. O’Reilly, “Electronic structure of amorphous carbon,” Phys. Rev. B 35, 2946–2957 (1987).
[CrossRef]

1984 (1)

R. H. Muller, J. C. Farmer, “Fast self-compensating spectral-scanning ellipsometer,” Rev. Sci. Instrum. 55, 371–374 (1984).
[CrossRef]

1976 (2)

P. S. Hauge, “Generalized rotating-compensator ellipsometry,” Surf. Sci. 56, 148–160 (1976).
[CrossRef]

D. E. Aspnes, “A photometric ellipsometer for measuring flux in a general state of polarization,” Surf. Sci. 56, 161–169 (1976).
[CrossRef]

1975 (2)

D. E. Aspnes, “Photometric ellipsometer for measuring partially polarized light,” J. Opt. Soc. Am. 65, 1274–1278 (1975).
[CrossRef]

P. S. Hauge, F. H. Dill, “A rotating-compensator Fourier ellipsometer,” Opt. Commun. 14, 431–437 (1975).
[CrossRef]

1974 (2)

H. J. Mathieu, D. E. McClure, R. H. Muller, “Fast self-compensating ellipsometer,” Rev. Sci. Instrum. 45, 798–802 (1974).
[CrossRef]

D. E. Aspnes, “Effects of component optical activity in data reduction and calibration of rotating-analyzer ellipsometers,” J. Opt. Soc. Am. 64, 812–819 (1974).
[CrossRef]

Aikawa, Y.

S. Iijima, Y. Aikawa, K. Baba, “Early formation of chemical vapor deposition diamond films,” Appl. Phys. Lett. 57, 2646–2648 (1990).
[CrossRef]

An, I.

J. Lee, P. I. Rovira, I. An, R. W. Collins, “Rotating-compensator multichannel ellipsometry: Applications for real time Stokes vector spectroscopy of thin film growth,” Rev. Sci. Instrum. 69, 1800–1810 (1998).
[CrossRef]

J. Lee, P. I. Rovira, I. An, R. W. Collins, “Rotating-compensator multichannel ellipsometry for characterization of the evolution of non-uniformities in diamond thin film growth,” Appl. Phys. Lett. 72, 900–902 (1998).
[CrossRef]

I. An, Y. M. Li, H. V. Nguyen, R. W. Collins, “Spectroscopic ellipsometry on the millisecond time scale for real time investigations of thin film and surface phenomena,” Rev. Sci. Instrum. 63, 3842–3848 (1992).
[CrossRef]

I. An, R. W. Collins, “Waveform analysis with optical multichannel detectors: Applications for rapid-scan spectroscopic ellipsometry,” Rev. Sci. Instrum. 62, 1904–1911 (1991).
[CrossRef]

N. V. Nguyen, B. S. Pudliner, I. An, R. W. Collins, “Error correction for calibration and data reduction in rotating polarizer ellipsometry: Applications to a novel multichannel ellipsometer,” J. Opt. Soc. Am. A 8, 919–931 (1991).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, “A photometric ellipsometer for measuring flux in a general state of polarization,” Surf. Sci. 56, 161–169 (1976).
[CrossRef]

D. E. Aspnes, “Photometric ellipsometer for measuring partially polarized light,” J. Opt. Soc. Am. 65, 1274–1278 (1975).
[CrossRef]

D. E. Aspnes, “Effects of component optical activity in data reduction and calibration of rotating-analyzer ellipsometers,” J. Opt. Soc. Am. 64, 812–819 (1974).
[CrossRef]

D. E. Aspnes, “The accurate determination of optical properties by ellipsometry,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1985), pp. 89–112.

Baba, K.

S. Iijima, Y. Aikawa, K. Baba, “Early formation of chemical vapor deposition diamond films,” Appl. Phys. Lett. 57, 2646–2648 (1990).
[CrossRef]

Bennett, H. E.

J. M. Bennett, H. E. Bennett, “Polarization,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, eds. (McGraw-Hill, New York, 1978), pp. 10-1–10-164.

Bennett, J. M.

J. M. Bennett, H. E. Bennett, “Polarization,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, eds. (McGraw-Hill, New York, 1978), pp. 10-1–10-164.

Butler, S. W.

S. A. Henck, W. M. Duncan, L. M. Lowenstein, S. W. Butler, “In situ spectral ellipsometry for real time thickness measurement: Etching multilayer stacks,” J. Vac. Sci. Technol. A 11, 1179–1185 (1993).
[CrossRef]

Chindaudom, P.

P. Chindaudom, K. Vedam, “Optical characterization of inhomogeneous transparent films on transparent substrates by spectroscopic ellipsometry,” in Optical Characterization of Real Films and Surfaces, K. Vedam, ed. (Academic, New York, 1994), pp. 191–247.

Collins, R. W.

J. Lee, P. I. Rovira, I. An, R. W. Collins, “Rotating-compensator multichannel ellipsometry for characterization of the evolution of non-uniformities in diamond thin film growth,” Appl. Phys. Lett. 72, 900–902 (1998).
[CrossRef]

J. Lee, P. I. Rovira, I. An, R. W. Collins, “Rotating-compensator multichannel ellipsometry: Applications for real time Stokes vector spectroscopy of thin film growth,” Rev. Sci. Instrum. 69, 1800–1810 (1998).
[CrossRef]

B. Hong, J. Lee, R. W. Collins, Y. Kuang, T. T. Tsong, W. Drawl, R. Messier, Y. E. Strausser, “Effects of processing conditions on the growth of nanocrystalline diamond thin films: Real time spectroscopic ellipsometry studies,” Diam. Relat. Mater. 6, 55–80 (1997).
[CrossRef]

J. Lee, R. W. Collins, B. Hong, R. Messier, Y. E. Strausser, “Analysis of the growth processes of plasma-enhanced chemical vapor deposited diamond films from CO/H2 and CH4/H2 mixtures using real time spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 15, 1929–1936 (1997).
[CrossRef]

R. A. Yarussi, A. R. Heyd, H. V. Nguyen, R. W. Collins, “Multichannel transmission ellipsometer for characterization of anisotropic optical materials,” J. Opt. Soc. Am. A 11, 2320–2330 (1994).
[CrossRef]

I. An, Y. M. Li, H. V. Nguyen, R. W. Collins, “Spectroscopic ellipsometry on the millisecond time scale for real time investigations of thin film and surface phenomena,” Rev. Sci. Instrum. 63, 3842–3848 (1992).
[CrossRef]

I. An, R. W. Collins, “Waveform analysis with optical multichannel detectors: Applications for rapid-scan spectroscopic ellipsometry,” Rev. Sci. Instrum. 62, 1904–1911 (1991).
[CrossRef]

N. V. Nguyen, B. S. Pudliner, I. An, R. W. Collins, “Error correction for calibration and data reduction in rotating polarizer ellipsometry: Applications to a novel multichannel ellipsometer,” J. Opt. Soc. Am. A 8, 919–931 (1991).
[CrossRef]

R. W. Collins, “Automatic rotating element ellipsometers: Calibration, operation, and real-time applications,” Rev. Sci. Instrum. 61, 2029–2062 (1990).
[CrossRef]

de Nijs, J. M. M.

Dill, F. H.

P. S. Hauge, F. H. Dill, “A rotating-compensator Fourier ellipsometer,” Opt. Commun. 14, 431–437 (1975).
[CrossRef]

Drawl, W.

B. Hong, J. Lee, R. W. Collins, Y. Kuang, T. T. Tsong, W. Drawl, R. Messier, Y. E. Strausser, “Effects of processing conditions on the growth of nanocrystalline diamond thin films: Real time spectroscopic ellipsometry studies,” Diam. Relat. Mater. 6, 55–80 (1997).
[CrossRef]

Duncan, W. M.

S. A. Henck, W. M. Duncan, L. M. Lowenstein, S. W. Butler, “In situ spectral ellipsometry for real time thickness measurement: Etching multilayer stacks,” J. Vac. Sci. Technol. A 11, 1179–1185 (1993).
[CrossRef]

Farmer, J. C.

R. H. Muller, J. C. Farmer, “Fast self-compensating spectral-scanning ellipsometer,” Rev. Sci. Instrum. 55, 371–374 (1984).
[CrossRef]

Hauge, P. S.

P. S. Hauge, “Generalized rotating-compensator ellipsometry,” Surf. Sci. 56, 148–160 (1976).
[CrossRef]

P. S. Hauge, F. H. Dill, “A rotating-compensator Fourier ellipsometer,” Opt. Commun. 14, 431–437 (1975).
[CrossRef]

Henck, S. A.

S. A. Henck, W. M. Duncan, L. M. Lowenstein, S. W. Butler, “In situ spectral ellipsometry for real time thickness measurement: Etching multilayer stacks,” J. Vac. Sci. Technol. A 11, 1179–1185 (1993).
[CrossRef]

Heyd, A. R.

Hoeksta, A.

Holtslag, A. H. M.

Hong, B.

B. Hong, J. Lee, R. W. Collins, Y. Kuang, T. T. Tsong, W. Drawl, R. Messier, Y. E. Strausser, “Effects of processing conditions on the growth of nanocrystalline diamond thin films: Real time spectroscopic ellipsometry studies,” Diam. Relat. Mater. 6, 55–80 (1997).
[CrossRef]

J. Lee, R. W. Collins, B. Hong, R. Messier, Y. E. Strausser, “Analysis of the growth processes of plasma-enhanced chemical vapor deposited diamond films from CO/H2 and CH4/H2 mixtures using real time spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 15, 1929–1936 (1997).
[CrossRef]

B. Hong, “Development of real-time spectroscopic ellipsometry and its application to the growth of diamond thin films by microwave plasma-enhanced chemical vapor deposition,” Ph.D. dissertation (The Pennsylvania State University, University Park, Pa, 1996).

Iijima, S.

S. Iijima, Y. Aikawa, K. Baba, “Early formation of chemical vapor deposition diamond films,” Appl. Phys. Lett. 57, 2646–2648 (1990).
[CrossRef]

Jellison, G. E.

G. E. Jellison, J. W. McCamy, “Sample depolarization effects from thin films of ZnS on GaAs as measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 61, 512–514 (1992).
[CrossRef]

G. E. Jellison, B. C. Sales, “Determination of the optical functions of transparent glasses by using spectroscopic ellipsometry,” Appl. Opt. 30, 4310–4315 (1991).
[CrossRef] [PubMed]

Kuang, Y.

B. Hong, J. Lee, R. W. Collins, Y. Kuang, T. T. Tsong, W. Drawl, R. Messier, Y. E. Strausser, “Effects of processing conditions on the growth of nanocrystalline diamond thin films: Real time spectroscopic ellipsometry studies,” Diam. Relat. Mater. 6, 55–80 (1997).
[CrossRef]

Lee, J.

J. Lee, P. I. Rovira, I. An, R. W. Collins, “Rotating-compensator multichannel ellipsometry: Applications for real time Stokes vector spectroscopy of thin film growth,” Rev. Sci. Instrum. 69, 1800–1810 (1998).
[CrossRef]

J. Lee, P. I. Rovira, I. An, R. W. Collins, “Rotating-compensator multichannel ellipsometry for characterization of the evolution of non-uniformities in diamond thin film growth,” Appl. Phys. Lett. 72, 900–902 (1998).
[CrossRef]

B. Hong, J. Lee, R. W. Collins, Y. Kuang, T. T. Tsong, W. Drawl, R. Messier, Y. E. Strausser, “Effects of processing conditions on the growth of nanocrystalline diamond thin films: Real time spectroscopic ellipsometry studies,” Diam. Relat. Mater. 6, 55–80 (1997).
[CrossRef]

J. Lee, R. W. Collins, B. Hong, R. Messier, Y. E. Strausser, “Analysis of the growth processes of plasma-enhanced chemical vapor deposited diamond films from CO/H2 and CH4/H2 mixtures using real time spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 15, 1929–1936 (1997).
[CrossRef]

Li, Y. M.

I. An, Y. M. Li, H. V. Nguyen, R. W. Collins, “Spectroscopic ellipsometry on the millisecond time scale for real time investigations of thin film and surface phenomena,” Rev. Sci. Instrum. 63, 3842–3848 (1992).
[CrossRef]

Lowenstein, L. M.

S. A. Henck, W. M. Duncan, L. M. Lowenstein, S. W. Butler, “In situ spectral ellipsometry for real time thickness measurement: Etching multilayer stacks,” J. Vac. Sci. Technol. A 11, 1179–1185 (1993).
[CrossRef]

Mathieu, H. J.

H. J. Mathieu, D. E. McClure, R. H. Muller, “Fast self-compensating ellipsometer,” Rev. Sci. Instrum. 45, 798–802 (1974).
[CrossRef]

McCamy, J. W.

G. E. Jellison, J. W. McCamy, “Sample depolarization effects from thin films of ZnS on GaAs as measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 61, 512–514 (1992).
[CrossRef]

McClure, D. E.

H. J. Mathieu, D. E. McClure, R. H. Muller, “Fast self-compensating ellipsometer,” Rev. Sci. Instrum. 45, 798–802 (1974).
[CrossRef]

Messier, R.

B. Hong, J. Lee, R. W. Collins, Y. Kuang, T. T. Tsong, W. Drawl, R. Messier, Y. E. Strausser, “Effects of processing conditions on the growth of nanocrystalline diamond thin films: Real time spectroscopic ellipsometry studies,” Diam. Relat. Mater. 6, 55–80 (1997).
[CrossRef]

J. Lee, R. W. Collins, B. Hong, R. Messier, Y. E. Strausser, “Analysis of the growth processes of plasma-enhanced chemical vapor deposited diamond films from CO/H2 and CH4/H2 mixtures using real time spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 15, 1929–1936 (1997).
[CrossRef]

Muller, R. H.

R. H. Muller, J. C. Farmer, “Fast self-compensating spectral-scanning ellipsometer,” Rev. Sci. Instrum. 55, 371–374 (1984).
[CrossRef]

H. J. Mathieu, D. E. McClure, R. H. Muller, “Fast self-compensating ellipsometer,” Rev. Sci. Instrum. 45, 798–802 (1974).
[CrossRef]

Nguyen, H. V.

R. A. Yarussi, A. R. Heyd, H. V. Nguyen, R. W. Collins, “Multichannel transmission ellipsometer for characterization of anisotropic optical materials,” J. Opt. Soc. Am. A 11, 2320–2330 (1994).
[CrossRef]

I. An, Y. M. Li, H. V. Nguyen, R. W. Collins, “Spectroscopic ellipsometry on the millisecond time scale for real time investigations of thin film and surface phenomena,” Rev. Sci. Instrum. 63, 3842–3848 (1992).
[CrossRef]

Nguyen, N. V.

O’Reilly, E. P.

J. Robertson, E. P. O’Reilly, “Electronic structure of amorphous carbon,” Phys. Rev. B 35, 2946–2957 (1987).
[CrossRef]

Pudliner, B. S.

Robertson, J.

J. Robertson, E. P. O’Reilly, “Electronic structure of amorphous carbon,” Phys. Rev. B 35, 2946–2957 (1987).
[CrossRef]

Rovira, P. I.

J. Lee, P. I. Rovira, I. An, R. W. Collins, “Rotating-compensator multichannel ellipsometry: Applications for real time Stokes vector spectroscopy of thin film growth,” Rev. Sci. Instrum. 69, 1800–1810 (1998).
[CrossRef]

J. Lee, P. I. Rovira, I. An, R. W. Collins, “Rotating-compensator multichannel ellipsometry for characterization of the evolution of non-uniformities in diamond thin film growth,” Appl. Phys. Lett. 72, 900–902 (1998).
[CrossRef]

Sales, B. C.

Strausser, Y. E.

J. Lee, R. W. Collins, B. Hong, R. Messier, Y. E. Strausser, “Analysis of the growth processes of plasma-enhanced chemical vapor deposited diamond films from CO/H2 and CH4/H2 mixtures using real time spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 15, 1929–1936 (1997).
[CrossRef]

B. Hong, J. Lee, R. W. Collins, Y. Kuang, T. T. Tsong, W. Drawl, R. Messier, Y. E. Strausser, “Effects of processing conditions on the growth of nanocrystalline diamond thin films: Real time spectroscopic ellipsometry studies,” Diam. Relat. Mater. 6, 55–80 (1997).
[CrossRef]

Tsong, T. T.

B. Hong, J. Lee, R. W. Collins, Y. Kuang, T. T. Tsong, W. Drawl, R. Messier, Y. E. Strausser, “Effects of processing conditions on the growth of nanocrystalline diamond thin films: Real time spectroscopic ellipsometry studies,” Diam. Relat. Mater. 6, 55–80 (1997).
[CrossRef]

van Silfhout, A.

Vedam, K.

P. Chindaudom, K. Vedam, “Optical characterization of inhomogeneous transparent films on transparent substrates by spectroscopic ellipsometry,” in Optical Characterization of Real Films and Surfaces, K. Vedam, ed. (Academic, New York, 1994), pp. 191–247.

Yarussi, R. A.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

G. E. Jellison, J. W. McCamy, “Sample depolarization effects from thin films of ZnS on GaAs as measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 61, 512–514 (1992).
[CrossRef]

J. Lee, P. I. Rovira, I. An, R. W. Collins, “Rotating-compensator multichannel ellipsometry for characterization of the evolution of non-uniformities in diamond thin film growth,” Appl. Phys. Lett. 72, 900–902 (1998).
[CrossRef]

S. Iijima, Y. Aikawa, K. Baba, “Early formation of chemical vapor deposition diamond films,” Appl. Phys. Lett. 57, 2646–2648 (1990).
[CrossRef]

Diam. Relat. Mater. (1)

B. Hong, J. Lee, R. W. Collins, Y. Kuang, T. T. Tsong, W. Drawl, R. Messier, Y. E. Strausser, “Effects of processing conditions on the growth of nanocrystalline diamond thin films: Real time spectroscopic ellipsometry studies,” Diam. Relat. Mater. 6, 55–80 (1997).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

J. Vac. Sci. Technol. A (2)

S. A. Henck, W. M. Duncan, L. M. Lowenstein, S. W. Butler, “In situ spectral ellipsometry for real time thickness measurement: Etching multilayer stacks,” J. Vac. Sci. Technol. A 11, 1179–1185 (1993).
[CrossRef]

J. Lee, R. W. Collins, B. Hong, R. Messier, Y. E. Strausser, “Analysis of the growth processes of plasma-enhanced chemical vapor deposited diamond films from CO/H2 and CH4/H2 mixtures using real time spectroscopic ellipsometry,” J. Vac. Sci. Technol. A 15, 1929–1936 (1997).
[CrossRef]

Opt. Commun. (1)

P. S. Hauge, F. H. Dill, “A rotating-compensator Fourier ellipsometer,” Opt. Commun. 14, 431–437 (1975).
[CrossRef]

Phys. Rev. B (1)

J. Robertson, E. P. O’Reilly, “Electronic structure of amorphous carbon,” Phys. Rev. B 35, 2946–2957 (1987).
[CrossRef]

Rev. Sci. Instrum. (6)

J. Lee, P. I. Rovira, I. An, R. W. Collins, “Rotating-compensator multichannel ellipsometry: Applications for real time Stokes vector spectroscopy of thin film growth,” Rev. Sci. Instrum. 69, 1800–1810 (1998).
[CrossRef]

I. An, R. W. Collins, “Waveform analysis with optical multichannel detectors: Applications for rapid-scan spectroscopic ellipsometry,” Rev. Sci. Instrum. 62, 1904–1911 (1991).
[CrossRef]

H. J. Mathieu, D. E. McClure, R. H. Muller, “Fast self-compensating ellipsometer,” Rev. Sci. Instrum. 45, 798–802 (1974).
[CrossRef]

R. W. Collins, “Automatic rotating element ellipsometers: Calibration, operation, and real-time applications,” Rev. Sci. Instrum. 61, 2029–2062 (1990).
[CrossRef]

I. An, Y. M. Li, H. V. Nguyen, R. W. Collins, “Spectroscopic ellipsometry on the millisecond time scale for real time investigations of thin film and surface phenomena,” Rev. Sci. Instrum. 63, 3842–3848 (1992).
[CrossRef]

R. H. Muller, J. C. Farmer, “Fast self-compensating spectral-scanning ellipsometer,” Rev. Sci. Instrum. 55, 371–374 (1984).
[CrossRef]

Surf. Sci. (2)

P. S. Hauge, “Generalized rotating-compensator ellipsometry,” Surf. Sci. 56, 148–160 (1976).
[CrossRef]

D. E. Aspnes, “A photometric ellipsometer for measuring flux in a general state of polarization,” Surf. Sci. 56, 161–169 (1976).
[CrossRef]

Other (4)

B. Hong, “Development of real-time spectroscopic ellipsometry and its application to the growth of diamond thin films by microwave plasma-enhanced chemical vapor deposition,” Ph.D. dissertation (The Pennsylvania State University, University Park, Pa, 1996).

J. M. Bennett, H. E. Bennett, “Polarization,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, eds. (McGraw-Hill, New York, 1978), pp. 10-1–10-164.

D. E. Aspnes, “The accurate determination of optical properties by ellipsometry,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1985), pp. 89–112.

P. Chindaudom, K. Vedam, “Optical characterization of inhomogeneous transparent films on transparent substrates by spectroscopic ellipsometry,” in Optical Characterization of Real Films and Surfaces, K. Vedam, ed. (Academic, New York, 1994), pp. 191–247.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Simplified schematic of the rotating-compensator multichannel spectroscopic ellipsometer in the PSCRA optical configuration.

Fig. 2
Fig. 2

Retardance as a function of photon energy for a 26.85-μm-thick mica sheet retarder used as the rotating compensator in the PSCRA ellipsometer (open points). The solid line is the best fit to the data with the expression shown, which is derived assuming a single-term Cauchy expansion for the principal indices of refraction of the mica.

Fig. 3
Fig. 3

Calibration data obtained from Eq. (6), plotted versus photon energy for a glass substrate. P S is the offset angle of the polarizer defined such that P′ = P - P S , where P′ is the true angle of the polarizer transmission axis with respect to the plane of incidence and P is the scale reading. The average value of P S computed over the photon energy range from 1.78 to 3.13 eV is -4.52° with a standard deviation of ∼0.01°.

Fig. 4
Fig. 4

Calibration data obtained from Eq. (7), plotted versus photon energy for a glass substrate. A - A S is the true azimuthal angle of the fixed-analyzer transmission axis, where A is the analyzer scale reading and A S is the correction to the scale reading. The average value of A - A S computed over the photon energy range from 1.78 to 3.13 eV is 43.85° with a systematic deviation of ∼±0.05°.

Fig. 5
Fig. 5

(a) Rotating-compensator phase angle C S , obtained in a calibration based on Eq. (8) and plotted as a function of pixel number N for a glass substrate. The solid line is the best-fit linear relationship from N = 30 (E = 1.78 eV) to N = 90 (E = 3.13 eV). (b) Spectrum in δC S , defined as the difference between the measured C S and the best-fit linear relationship versus photon energy. The standard deviation computed as a function of photon energy from 1.78 to 3.13 eV is 0.01°.

Fig. 6
Fig. 6

Ellipsometry angles (ψ, Δ) and the degree of polarization p for a Corning 7059 glass substrate deduced from Eqs. (9) –(14). The back surface of the substrate was roughened and coated with colloidal graphite to minimize the back-surface reflection.

Fig. 7
Fig. 7

Pseudoindex of refraction and pseudoextinction coefficient (〈n〉, 〈k〉) for the glass substrate of Fig. 6 before (open points) and after (filled points) abrasion by 0.25-μm diamond powder used for seeding to enhance diamond film growth. (〈n〉, 〈k〉) are deduced from (ψ, Δ) by application of the Fresnel equations for a single interface. Also included are best fits, assuming a single-layer model (lines). For the untreated substrate, a 9-Å layer modeled as a 50/50 vol. % mixture of glass/void simulates surface roughness. For the treated substrate, a 51-Å layer modeled as a 23/27/50 vol. % mixture of glass/(sp2 C)/void simulates the damaged overlayer.

Fig. 8
Fig. 8

Comparison of the index of refraction spectra n for the glass substrate of Fig. 6 measured with a multichannel ellipsometer in the PSCRA configuration designed for real-time studies (open points) and with a PCSAR ellipsometer designed for ex situ studies. The PCSAR results for n are fit to a Sellmeier expression, and it is the fit to the data that is plotted here (solid line). The difference between the two results is presented in the lower panel and reveals a standard deviation of 8 × 10-4 over the photon energy range from 1.5 to 3.5 eV.

Fig. 9
Fig. 9

Time evolution of the induction layer (d i ), the nucleating and surface roughness layer (d s ), and the bulk-layer (d b ) thicknesses in the first ∼500 Å of diamond film growth, obtained from data collected during the deposition on glass in a low-temperature process. These results were deduced with a three-layer model for diamond growth consisting of an (sp2 C)-rich layer that forms during the induction time and bulk and surface roughness layers associated with the diamond film.

Fig. 10
Fig. 10

Dielectric function of the (sp2 C)-rich interface layer that forms during the induction period for the growth of diamond on glass in a low-temperature process. The sample temperature for these results is estimated to be ∼500 °C. Also shown for comparison is the dielectric function of bulk glassy carbon obtained at room temperature from measurements of an optically polished sample.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

I t = I 0 1 + α 2   cos   2 ω C t + β 2   sin   2 ω C t + α 4   cos   4 ω C t + β 4   sin   4 ω C t ,
α m = α m   cos mC S + β m   sin mC S ,     m = 2 ,   4 ;
β m = - α m   sin mC S + β m   cos mC S ,     m = 2 ,   4 ;
α 2 + i β 2 = - ip   sin   δ   sin   2 χ   exp 2 iA / α 0 ,
α 4 + i β 4 = p   sin 2 δ / 2 cos   2 χ   exp 2 i A + Q / α 0 ,
α 0 = 1 + p   cos 2 δ / 2 cos   2 χ   cos   2 A - Q .
S j = j - 1 T C / 5 jT C / 5   I t d t ,     j = 1 , ,   5 .
α 2 = 0.534480 + 1.195133 S 1 - S 2 - S 4 + S 5 - 2.672398 S 3 / π I 0 ,
β 2 = 1.256637 S 1 - S 5 + 2.033282 S 2 - S 4 / π I 0 ,
α 4 = 0.816612 S 1 + S 5 - 2.137919 S 2 + S 4 + 2.642613 S 3 / π I 0 ,
β 4 = 2.513274 S 1 - S 5 - 1.553289 S 2 - S 4 / π I 0 ,
π I 0 = S 1 + S 2 + S 3 + S 4 + S 5 .
Φ 4 P = Θ 4 A = π / 2 ,   P - Θ 4 A = 0 ,   P + π / 2 π / 2 + 2   cot   2 ψ   cos   Δ   P - P S , P P S ,
cos   2 A - A S = L 4 P S - L 4 P S + π / 2 / 2 L 4 P S L 4 P S + π / 2 - L 4 P S + π / 2 - L 4 P S ,
Θ 4 P = 1 / 2 tan - 1 β 4 / α 4 2 C S + A - A S + cot   ψ   cos   Δ   P - P S ; P P S ,
Q = 1 / 2 tan - 1 β 4 / α 4 - A ,
χ = 1 / 2 tan - 1 α 2 cos   2 A + Q × tan δ / 2 / 2 α 4 sin   A ,
p = Q cos   2 χ   cos   2 A - Q × 1 - 1 + Q cos 2 δ / 2 - 1 ,
Q = α 4 cos   4 Q + β 4 sin   4 Q .
cos   2 ψ = cos   2 P - cos   2 Q   cos   2 χ / 1 - cos   2 Q   cos   2 χ   cos   2 P ,
sin   Δ = sin   2 χ   cos   2 ψ   cos   2 P - 1 / sin   2 ψ   sin   2 P ,
cos   Δ = cos   2 χ   sin   2 Q × 1 - cos   2 ψ   cos   2 P / sin   2 ψ   sin   2 P .

Metrics