Abstract

Using electric-field poling at room temperature, we selectively reversed the direction of the spontaneous polarization in a 200-μm-thick, z-cut LiNbO3 electret to produce a bicell pyroelectric detector. The detector required only a single set of electrodes, one electrode on the front surface and one on the back surface. Microphonic noise that is typical of monocell pyroelectric detectors is reduced in the present device. Our spatial uniformity data indicate that the optical response of one half of the bicell detector area was equal to and opposite the other half within 1.2%. The microphonic suppression of the bicell pyroelectric detector was less than -36 dB from 10 to 50 Hz and less than -118 dB at 35 Hz of that of a reference monocell pyroelectric detector. The substrate thickness is significantly greater than those of other domain-engineered pyroelectric detector designs and allows us to build practical, large-area detectors for radiometric applications.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. M. Shorrocks, R. W. Whatmore, M. K. Robinson, S. G. Porter, “Low microphony pyroelectric arrays,” in Recent Developments in Materials and Detectors for the Infrared, F. D. Morten, J. S. Seeley, eds., Proc. SPIE588, 44–51 (1985).
    [CrossRef]
  2. F. C. Gabriel, “Microphonically balanced pyroelectric detectors,” Appl. Opt. 13, 1294–1295 (1974).
    [CrossRef] [PubMed]
  3. N. E. Byer, S. E. Stokowski, J. D. Venables, “Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes,” Appl. Phys. Lett. 27, 639–641 (1975).
    [CrossRef]
  4. L. E. Meyers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  5. B. R. Holeman, “Sinusoidally modulated heat flow and the pyroelectric effect,” Infrared Phys. 12, 125–135 (1972).
    [CrossRef]
  6. R. Bechman, Piezoelectricity (H.M. Stationery Office, London, 1957), p. 65.
  7. E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), p. 177.

1995 (1)

1975 (1)

N. E. Byer, S. E. Stokowski, J. D. Venables, “Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes,” Appl. Phys. Lett. 27, 639–641 (1975).
[CrossRef]

1974 (1)

1972 (1)

B. R. Holeman, “Sinusoidally modulated heat flow and the pyroelectric effect,” Infrared Phys. 12, 125–135 (1972).
[CrossRef]

Bechman, R.

R. Bechman, Piezoelectricity (H.M. Stationery Office, London, 1957), p. 65.

Bosenberg, W. R.

Byer, N. E.

N. E. Byer, S. E. Stokowski, J. D. Venables, “Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes,” Appl. Phys. Lett. 27, 639–641 (1975).
[CrossRef]

Byer, R. L.

Crowe, D. G.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), p. 177.

Dereniak, E. L.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), p. 177.

Eckardt, R. C.

Fejer, M. M.

Gabriel, F. C.

Holeman, B. R.

B. R. Holeman, “Sinusoidally modulated heat flow and the pyroelectric effect,” Infrared Phys. 12, 125–135 (1972).
[CrossRef]

Meyers, L. E.

Pierce, J. W.

Porter, S. G.

N. M. Shorrocks, R. W. Whatmore, M. K. Robinson, S. G. Porter, “Low microphony pyroelectric arrays,” in Recent Developments in Materials and Detectors for the Infrared, F. D. Morten, J. S. Seeley, eds., Proc. SPIE588, 44–51 (1985).
[CrossRef]

Robinson, M. K.

N. M. Shorrocks, R. W. Whatmore, M. K. Robinson, S. G. Porter, “Low microphony pyroelectric arrays,” in Recent Developments in Materials and Detectors for the Infrared, F. D. Morten, J. S. Seeley, eds., Proc. SPIE588, 44–51 (1985).
[CrossRef]

Shorrocks, N. M.

N. M. Shorrocks, R. W. Whatmore, M. K. Robinson, S. G. Porter, “Low microphony pyroelectric arrays,” in Recent Developments in Materials and Detectors for the Infrared, F. D. Morten, J. S. Seeley, eds., Proc. SPIE588, 44–51 (1985).
[CrossRef]

Stokowski, S. E.

N. E. Byer, S. E. Stokowski, J. D. Venables, “Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes,” Appl. Phys. Lett. 27, 639–641 (1975).
[CrossRef]

Venables, J. D.

N. E. Byer, S. E. Stokowski, J. D. Venables, “Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes,” Appl. Phys. Lett. 27, 639–641 (1975).
[CrossRef]

Whatmore, R. W.

N. M. Shorrocks, R. W. Whatmore, M. K. Robinson, S. G. Porter, “Low microphony pyroelectric arrays,” in Recent Developments in Materials and Detectors for the Infrared, F. D. Morten, J. S. Seeley, eds., Proc. SPIE588, 44–51 (1985).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. E. Byer, S. E. Stokowski, J. D. Venables, “Complementary domain pyroelectric detectors with reduced sensitivity to mechanical vibrations and temperature changes,” Appl. Phys. Lett. 27, 639–641 (1975).
[CrossRef]

Infrared Phys. (1)

B. R. Holeman, “Sinusoidally modulated heat flow and the pyroelectric effect,” Infrared Phys. 12, 125–135 (1972).
[CrossRef]

J. Opt. Soc. Am. B (1)

Other (3)

R. Bechman, Piezoelectricity (H.M. Stationery Office, London, 1957), p. 65.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), p. 177.

N. M. Shorrocks, R. W. Whatmore, M. K. Robinson, S. G. Porter, “Low microphony pyroelectric arrays,” in Recent Developments in Materials and Detectors for the Infrared, F. D. Morten, J. S. Seeley, eds., Proc. SPIE588, 44–51 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Representation of a LiNbO3 electret showing proportions of the electrode area and the domain-reversed area.

Fig. 2
Fig. 2

Schematic of the pyroelectric detector assembly.

Fig. 3
Fig. 3

Spatial uniformity of the bicell pyroelectric detector.

Fig. 4
Fig. 4

Microphonic attenuation plotted as a function of frequency.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i pyro = j ω   pA b 0 b   T x d x   exp j ω t .
i piezo = KfA σ .
R f = 20   log i b f / i s f .

Metrics