Abstract

Scattering effects in a two-photon optical data storage system are numerically studied. Surface scattering analysis with a scalar, beam propagation model is performed. We analyze the problem by modeling scattering from randomly varying surfaces and also by Fourier surface decomposition. Scattering induced by propagation through multiple pages of randomly recorded data marks is also studied with a hybrid finite-difference-time-domain/angular-spectrum model. Both surface and bulk scattering are shown to influence the spatial properties of the optical beam. Results and some possible implications are presented.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Jamberdino, F. N. Haritatos, B. W. Canfield, “Optical memories for large database storage,” Rome Lab. Tech. J. 1, 81–96 (1995).
  2. SONY World Wide Web page detailing DVD specifications and parameters. HTML address, http://www.sel.sony.com/SEL/consumer/dvd/specs.html (1997).
  3. S. Hunter, C. Solomon, S. Esener, J. E. Ford, A. S. Dvornikov, P. M. Rentzepis, “3-dimensional optical storage by 2-photon recording,” Opt. Memory Neural Networks 3, 151–166 (1994).
  4. F. B. McCormick, I. Cokgor, S. C. Esener, A. S. Dvornikov, P. M. Rentzepis, “Two-photon absorption-based 3-D optical memories,” in High Density Data Recording and Retrieval Technologies, T. A. Schwartz, Martin Francis, ed., Proc. SPIE2604, 23–32 (1996).
    [CrossRef]
  5. F. B. McCormick, I. Cokgor, A. S. Dvornikov, M. Wang, N. Kim, K. Coblentz, E. Esener, P. M. Rentzepis, “3-D data storage in two-photon photochromic optical memories,” Joint International Symposium on Optical Memory and Optical Data Storage, Vol. 12 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 110–115.
  6. J. Strickler, W. Webb, “Signal measurements of multi-layer write once data storage media,” Optical Data Storage, D. B. Carlin, D. B. Kay, eds., Proc. SPIE1663, 104–111 (1992).
    [CrossRef]
  7. J. Strickler, “Data transfer rates and parallelism of two-photon memories,” Photonics for Processors, Neural Networks, and Memories, J. L. Horner, B. Javidi, S. T. Kowel, W. J. Miceli, eds., Proc. SPIE2026, 570–574 (1993).
    [CrossRef]
  8. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), p. 47.
  9. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 69–70.
  10. J. L. Kann, T. D. Milster, F. Froehlich, R. W. Ziolkowski, J. Judkins, “Near-field optical detection of asperities in dielectric surfaces,” J. Opt. Soc. Am. A 12, 501–512 (1995).
    [CrossRef]
  11. J. L. Kann, “Numerical modeling of a near-field scanning optical system,” Ph.D. dissertation (University of Arizona, Tucson, Arizona, 1995).
  12. J. Strickler, W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991).
    [CrossRef] [PubMed]
  13. A. Toriumi, J. M. Herrmann, S. Kawata, “Nondestructive readout of a three-dimensional photochromic optical memory with a near-infrared differential phase contrast microscope,” Opt. Lett. 22, 555–557 (1997).
    [CrossRef] [PubMed]

1997 (1)

1995 (2)

J. L. Kann, T. D. Milster, F. Froehlich, R. W. Ziolkowski, J. Judkins, “Near-field optical detection of asperities in dielectric surfaces,” J. Opt. Soc. Am. A 12, 501–512 (1995).
[CrossRef]

A. A. Jamberdino, F. N. Haritatos, B. W. Canfield, “Optical memories for large database storage,” Rome Lab. Tech. J. 1, 81–96 (1995).

1994 (1)

S. Hunter, C. Solomon, S. Esener, J. E. Ford, A. S. Dvornikov, P. M. Rentzepis, “3-dimensional optical storage by 2-photon recording,” Opt. Memory Neural Networks 3, 151–166 (1994).

1991 (1)

Canfield, B. W.

A. A. Jamberdino, F. N. Haritatos, B. W. Canfield, “Optical memories for large database storage,” Rome Lab. Tech. J. 1, 81–96 (1995).

Coblentz, K.

F. B. McCormick, I. Cokgor, A. S. Dvornikov, M. Wang, N. Kim, K. Coblentz, E. Esener, P. M. Rentzepis, “3-D data storage in two-photon photochromic optical memories,” Joint International Symposium on Optical Memory and Optical Data Storage, Vol. 12 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 110–115.

Cokgor, I.

F. B. McCormick, I. Cokgor, S. C. Esener, A. S. Dvornikov, P. M. Rentzepis, “Two-photon absorption-based 3-D optical memories,” in High Density Data Recording and Retrieval Technologies, T. A. Schwartz, Martin Francis, ed., Proc. SPIE2604, 23–32 (1996).
[CrossRef]

F. B. McCormick, I. Cokgor, A. S. Dvornikov, M. Wang, N. Kim, K. Coblentz, E. Esener, P. M. Rentzepis, “3-D data storage in two-photon photochromic optical memories,” Joint International Symposium on Optical Memory and Optical Data Storage, Vol. 12 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 110–115.

Dvornikov, A. S.

S. Hunter, C. Solomon, S. Esener, J. E. Ford, A. S. Dvornikov, P. M. Rentzepis, “3-dimensional optical storage by 2-photon recording,” Opt. Memory Neural Networks 3, 151–166 (1994).

F. B. McCormick, I. Cokgor, A. S. Dvornikov, M. Wang, N. Kim, K. Coblentz, E. Esener, P. M. Rentzepis, “3-D data storage in two-photon photochromic optical memories,” Joint International Symposium on Optical Memory and Optical Data Storage, Vol. 12 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 110–115.

F. B. McCormick, I. Cokgor, S. C. Esener, A. S. Dvornikov, P. M. Rentzepis, “Two-photon absorption-based 3-D optical memories,” in High Density Data Recording and Retrieval Technologies, T. A. Schwartz, Martin Francis, ed., Proc. SPIE2604, 23–32 (1996).
[CrossRef]

Esener, E.

F. B. McCormick, I. Cokgor, A. S. Dvornikov, M. Wang, N. Kim, K. Coblentz, E. Esener, P. M. Rentzepis, “3-D data storage in two-photon photochromic optical memories,” Joint International Symposium on Optical Memory and Optical Data Storage, Vol. 12 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 110–115.

Esener, S.

S. Hunter, C. Solomon, S. Esener, J. E. Ford, A. S. Dvornikov, P. M. Rentzepis, “3-dimensional optical storage by 2-photon recording,” Opt. Memory Neural Networks 3, 151–166 (1994).

Esener, S. C.

F. B. McCormick, I. Cokgor, S. C. Esener, A. S. Dvornikov, P. M. Rentzepis, “Two-photon absorption-based 3-D optical memories,” in High Density Data Recording and Retrieval Technologies, T. A. Schwartz, Martin Francis, ed., Proc. SPIE2604, 23–32 (1996).
[CrossRef]

Ford, J. E.

S. Hunter, C. Solomon, S. Esener, J. E. Ford, A. S. Dvornikov, P. M. Rentzepis, “3-dimensional optical storage by 2-photon recording,” Opt. Memory Neural Networks 3, 151–166 (1994).

Froehlich, F.

Gaskill, J. D.

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), p. 47.

Goodman, J.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 69–70.

Haritatos, F. N.

A. A. Jamberdino, F. N. Haritatos, B. W. Canfield, “Optical memories for large database storage,” Rome Lab. Tech. J. 1, 81–96 (1995).

Herrmann, J. M.

Hunter, S.

S. Hunter, C. Solomon, S. Esener, J. E. Ford, A. S. Dvornikov, P. M. Rentzepis, “3-dimensional optical storage by 2-photon recording,” Opt. Memory Neural Networks 3, 151–166 (1994).

Jamberdino, A. A.

A. A. Jamberdino, F. N. Haritatos, B. W. Canfield, “Optical memories for large database storage,” Rome Lab. Tech. J. 1, 81–96 (1995).

Judkins, J.

Kann, J. L.

J. L. Kann, T. D. Milster, F. Froehlich, R. W. Ziolkowski, J. Judkins, “Near-field optical detection of asperities in dielectric surfaces,” J. Opt. Soc. Am. A 12, 501–512 (1995).
[CrossRef]

J. L. Kann, “Numerical modeling of a near-field scanning optical system,” Ph.D. dissertation (University of Arizona, Tucson, Arizona, 1995).

Kawata, S.

Kim, N.

F. B. McCormick, I. Cokgor, A. S. Dvornikov, M. Wang, N. Kim, K. Coblentz, E. Esener, P. M. Rentzepis, “3-D data storage in two-photon photochromic optical memories,” Joint International Symposium on Optical Memory and Optical Data Storage, Vol. 12 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 110–115.

McCormick, F. B.

F. B. McCormick, I. Cokgor, S. C. Esener, A. S. Dvornikov, P. M. Rentzepis, “Two-photon absorption-based 3-D optical memories,” in High Density Data Recording and Retrieval Technologies, T. A. Schwartz, Martin Francis, ed., Proc. SPIE2604, 23–32 (1996).
[CrossRef]

F. B. McCormick, I. Cokgor, A. S. Dvornikov, M. Wang, N. Kim, K. Coblentz, E. Esener, P. M. Rentzepis, “3-D data storage in two-photon photochromic optical memories,” Joint International Symposium on Optical Memory and Optical Data Storage, Vol. 12 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 110–115.

Milster, T. D.

Rentzepis, P. M.

S. Hunter, C. Solomon, S. Esener, J. E. Ford, A. S. Dvornikov, P. M. Rentzepis, “3-dimensional optical storage by 2-photon recording,” Opt. Memory Neural Networks 3, 151–166 (1994).

F. B. McCormick, I. Cokgor, S. C. Esener, A. S. Dvornikov, P. M. Rentzepis, “Two-photon absorption-based 3-D optical memories,” in High Density Data Recording and Retrieval Technologies, T. A. Schwartz, Martin Francis, ed., Proc. SPIE2604, 23–32 (1996).
[CrossRef]

F. B. McCormick, I. Cokgor, A. S. Dvornikov, M. Wang, N. Kim, K. Coblentz, E. Esener, P. M. Rentzepis, “3-D data storage in two-photon photochromic optical memories,” Joint International Symposium on Optical Memory and Optical Data Storage, Vol. 12 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 110–115.

Solomon, C.

S. Hunter, C. Solomon, S. Esener, J. E. Ford, A. S. Dvornikov, P. M. Rentzepis, “3-dimensional optical storage by 2-photon recording,” Opt. Memory Neural Networks 3, 151–166 (1994).

Strickler, J.

J. Strickler, W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991).
[CrossRef] [PubMed]

J. Strickler, W. Webb, “Signal measurements of multi-layer write once data storage media,” Optical Data Storage, D. B. Carlin, D. B. Kay, eds., Proc. SPIE1663, 104–111 (1992).
[CrossRef]

J. Strickler, “Data transfer rates and parallelism of two-photon memories,” Photonics for Processors, Neural Networks, and Memories, J. L. Horner, B. Javidi, S. T. Kowel, W. J. Miceli, eds., Proc. SPIE2026, 570–574 (1993).
[CrossRef]

Toriumi, A.

Wang, M.

F. B. McCormick, I. Cokgor, A. S. Dvornikov, M. Wang, N. Kim, K. Coblentz, E. Esener, P. M. Rentzepis, “3-D data storage in two-photon photochromic optical memories,” Joint International Symposium on Optical Memory and Optical Data Storage, Vol. 12 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 110–115.

Webb, W.

J. Strickler, W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991).
[CrossRef] [PubMed]

J. Strickler, W. Webb, “Signal measurements of multi-layer write once data storage media,” Optical Data Storage, D. B. Carlin, D. B. Kay, eds., Proc. SPIE1663, 104–111 (1992).
[CrossRef]

Ziolkowski, R. W.

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Opt. Memory Neural Networks (1)

S. Hunter, C. Solomon, S. Esener, J. E. Ford, A. S. Dvornikov, P. M. Rentzepis, “3-dimensional optical storage by 2-photon recording,” Opt. Memory Neural Networks 3, 151–166 (1994).

Rome Lab. Tech. J. (1)

A. A. Jamberdino, F. N. Haritatos, B. W. Canfield, “Optical memories for large database storage,” Rome Lab. Tech. J. 1, 81–96 (1995).

Other (8)

SONY World Wide Web page detailing DVD specifications and parameters. HTML address, http://www.sel.sony.com/SEL/consumer/dvd/specs.html (1997).

F. B. McCormick, I. Cokgor, S. C. Esener, A. S. Dvornikov, P. M. Rentzepis, “Two-photon absorption-based 3-D optical memories,” in High Density Data Recording and Retrieval Technologies, T. A. Schwartz, Martin Francis, ed., Proc. SPIE2604, 23–32 (1996).
[CrossRef]

F. B. McCormick, I. Cokgor, A. S. Dvornikov, M. Wang, N. Kim, K. Coblentz, E. Esener, P. M. Rentzepis, “3-D data storage in two-photon photochromic optical memories,” Joint International Symposium on Optical Memory and Optical Data Storage, Vol. 12 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 110–115.

J. Strickler, W. Webb, “Signal measurements of multi-layer write once data storage media,” Optical Data Storage, D. B. Carlin, D. B. Kay, eds., Proc. SPIE1663, 104–111 (1992).
[CrossRef]

J. Strickler, “Data transfer rates and parallelism of two-photon memories,” Photonics for Processors, Neural Networks, and Memories, J. L. Horner, B. Javidi, S. T. Kowel, W. J. Miceli, eds., Proc. SPIE2026, 570–574 (1993).
[CrossRef]

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), p. 47.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 69–70.

J. L. Kann, “Numerical modeling of a near-field scanning optical system,” Ph.D. dissertation (University of Arizona, Tucson, Arizona, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Setup of the two-photon memory system. SHG, second-harmonic generation; SLM, spatial light modulator.

Fig. 2
Fig. 2

x-direction beam profiles at the BW when scattered off of a rough surface. (a)–(e) correspond to BW values of 5, 10, 20, 40, and 80 μm, respectively.

Fig. 3
Fig. 3

Experimentally recorded data pages. Fairly large irradiance variations are observed in the horizontal direction.

Fig. 4
Fig. 4

Histogram of the rms beam error versus surface amplitude variations in the y direction.

Fig. 5
Fig. 5

On-axis irradiance falloff and diffraction efficiency for BW = 5 μm.

Fig. 6
Fig. 6

On-axis irradiance falloff and diffraction efficiency for BW = 20 μm.

Fig. 7
Fig. 7

On-axis irradiance falloff and diffraction efficiency for BW = 80 μm.

Fig. 8
Fig. 8

x-direction beam profile at the BW when the surface is as a sinusoidal phase grating. For this case BW = 20 μm and f x = 100 cycles/mm. Figures 6(a)6(d) correspond to A = λ/25, λ/10, λ/5, and λ/2, respectively.

Fig. 9
Fig. 9

x-direction beam profile at the BW when the surface is as a sinusoidal phase grating. For this case BW = 80 μm and f x = 10 cycles/mm. Figures 7(a)7(d) correspond to A = λ/25, λ/10, λ/5, and λ/2, respectively.

Fig. 10
Fig. 10

(a) Physical setup and (b) setup of the two-dimensional model.

Fig. 11
Fig. 11

xz profiles of |E| near focus. (a) The square root of the nominal field (no data marks). (b) The randomly chosen bit pattern. (c) The square root of the field with data marks. (d) The difference in |E| between the case of marks and no marks present.

Fig. 12
Fig. 12

xz profile of the instantaneous difference in |E| between the case of marks and no marks present near focus.

Fig. 13
Fig. 13

Computed OPD by use of a FDTD/angular-spectrum model (solid curve) and a simple theoretical model (broken curve).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

t x ,   y = exp - j kh x ,   y ,
h x = Gaus x / b x * randnormal x ,   σ x 2 ) , h y = Gaus ( y / b y * randnormal ( y ,   σ y 2 ) ,
Gaus x / b = exp - π x 2 / b 2 ,
h x = A   cos 2 π f x x ,
SG x = exp - x / b n ,
n uw - n w / 0.5 n uw + n w ,

Metrics