Abstract

A method for the radiometric correction of satellite imagery over mountainous terrain has been developed to remove atmospheric and topographic effects. The algorithm accounts for horizontally varying atmospheric conditions and also includes the height dependence of the atmospheric radiance and transmittance functions to simulate the simplified properties of a three-dimensional atmosphere. A database has been compiled that contains the results of radiative transfer calculations (atmospheric transmittance, path radiance, direct and diffuse solar flux) for a wide range of weather conditions. A digital elevation model is used to obtain information about surface elevation, slope, and orientation. Based on the Lambertian assumption the surface reflectance in rugged terrain is calculated for the specified atmospheric conditions. Regions with extreme illumination geometries sensitive to BRDF effects can be optionally processed separately. The method is restricted to high spatial resolution satellite sensors with a small swath angle such as the Landsat thematic mapper and Systeme pour l’Observation de la Terre high resolution visible, since some simplifying assumptions were made to reduce the required image processing time.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Keister, project ed., Multispectral Imagery Reference Guide (Logicon Geodynamics, Fairfax, Va., 1997).
  2. B. N. Holben, C. O. Justice, “The topographic effect on spectral response from nadir-pointing sensors,” Photogr. Eng. Remote Sensing 46, 1191–1200 (1980).
  3. D. L. Civco, “Topographic normalization of Landsat Thematic Mapper digital imagery,” Photogr. Eng. Remote Sensing 55, 1303–1309 (1989).
  4. R. W. Sjoberg, B. K. P. Horn, “Atmospheric effects in satellite imaging of mountainous terrain,” Appl. Opt. 22, 1701–1716 (1983).
    [CrossRef]
  5. C. Conese, M. A. Gilabert, F. Maselli, L. Bottai, “Topographic normalization of TM scenes through the use of an atmospheric correction method and digital terrain models,” Photogr. Eng. Remote Sensing 59, 1745–1753 (1993).
  6. C. Proy, D. Tanre, P. Y. Deschamps, “Evaluation of topographic effects in remotely sensed data,” Remote Sensing Environ. 30, 21–32 (1989).
    [CrossRef]
  7. S. Sandmeier, K. I. Itten, “A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain,” IEEE Trans. Geosci. Remote Sensing 35, 708–717 (1997).
    [CrossRef]
  8. R. Richter, “Correction of atmospheric and topographic effects for high spatial resolution satellite imagery,” Int. J. Remote Sensing 18, 1099–1111 (1997).
    [CrossRef]
  9. R. Richter, “A spatially adaptive fast atmospheric correction algorithm,” Int. J. Remote Sensing 17, 1201–1214 (1996).
    [CrossRef]
  10. R. Richter, “Atmospheric correction of satellite data with haze removal including a haze/clear transition region,” Comput. Geosci. 22, 675–681 (1996).
    [CrossRef]
  11. A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).
  12. E. P. Shettle, R. W. Fenn, “Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  13. Y. J. Kaufman, C. Sendra, “Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery,” Int. J. Remote Sensing 9, 1357–1381 (1988).
    [CrossRef]
  14. P. N. Slater, S. F. Bigyar, R. G. Holm, R. D. Jackson, Y. Mao, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
    [CrossRef]
  15. J. C. Price, “Calibration comparison for the Landsat 4 and 5 multispectral scanners and thematic mappers,” Appl. Opt. 28, 465–471 (1989).
    [CrossRef] [PubMed]
  16. J. Dozier, J. Bruno, P. Downey, “A faster solution to the horizon problem,” Comput. Geosci. 7, 145–151 (1981).
    [CrossRef]
  17. J. Hill, W. Mehl, V. Radeloff, “Improved forest mapping by combining corrections of atmospheric and topographic effects in Landsat TM imagery,” in Sensors and Environmental Applications of Remote Sensing, J. Askne, ed. (Balkema, Rotterdam, The Netherlands, 1995).
  18. J. E. Hay, D. C. McKay, “Estimating solar irradiance on inclined surfaces: a review and assessment of methodologies,” Int. J. Sol. Energy 3, 203–240 (1985).
    [CrossRef]
  19. J. V. Dave, “Effect of atmospheric conditions on remote sensing of a surface nonhomogeneity,” Photogr. Eng. Remote Sensing 46, 1173–1180 (1980).
  20. Y. J. Kaufman, “Atmospheric effect on spatial resolution of surface imagery,” Appl. Opt. 23, 3400–3408 (1984).
    [CrossRef] [PubMed]
  21. K. T. Kriebel, “Measured spectral bidirectional reflection properties of four vegetated surfaces,” Appl. Opt. 17, 253–259 (1978).
    [CrossRef] [PubMed]
  22. D. S. Kimes, “Dynamics of directional reflectance factor distributions for vegetated canopies,” Appl. Opt. 22, 1364–1372 (1983).
    [CrossRef] [PubMed]
  23. D. W. Deering, T. F. Eck, J. Otterman, “Bidirectional reflectances of selected desert surfaces and their three-parameter soil characterisation,” Agri. Forest Meteorol. 52, 71–93 (1990).
    [CrossRef]
  24. B. C. Schaaf, X. Li, A. H. Strahler, “Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model,” IEEE Trans. Geosci. Remote Sensing 32, 1186–1193 (1994).
    [CrossRef]
  25. W. Thomas, “A three-dimensional model for calculating the reflection functions of inhomogeneous and orographically structured natural landscapes,” Remote Sensing Environ. 59, 44–63 (1997).
    [CrossRef]
  26. J. L. Engel, O. Weinstein, “The Thematic Mapper - an overview,” IEEE Trans. Geosci. Remote Sensing 21, 258–265 (1983).
    [CrossRef]
  27. S. Kalyanaraman, R. K. Rajangam, R. Rattan, “Indian remote sensing spacecraft 1C/1D,” Int. J. Remote Sensing 6, 791–799 (1995).
    [CrossRef]
  28. C. C. Borel, S. A. Gerstl, B. J. Powers, “The radiosity method in optical remote sensing of structured 3-D surfaces,” Remote Sensing Environ. 36, 13–44 (1991).
    [CrossRef]
  29. D. G. Goodenough, J. C. Deguise, M. A. Robson, “Multiple expert systems for using digital terrain models,” in Proceedings of the International Geoscience and Remote Sensing Symposium, R. Mills, ed. (Institute of Electrical and Electronic Engineers, Washington, D.C., 1990), p. 961.
    [CrossRef]
  30. J. R. Carter, “The effect of data precision on the calculation of slope and aspect using gridded DEMs,” Cartographica 29, 22–34 (1992).
    [CrossRef]
  31. ERDAS Field Guide, 2nd ed., version 7.5, (ERDAS, Inc., Atlanta, Ga., 1991), pp. 169–190.
  32. P. N. Slater, Remote Sensing: Optics and Optical Systems (Addison-Wesley, Reading, Mass., 1980).

1997 (3)

S. Sandmeier, K. I. Itten, “A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain,” IEEE Trans. Geosci. Remote Sensing 35, 708–717 (1997).
[CrossRef]

R. Richter, “Correction of atmospheric and topographic effects for high spatial resolution satellite imagery,” Int. J. Remote Sensing 18, 1099–1111 (1997).
[CrossRef]

W. Thomas, “A three-dimensional model for calculating the reflection functions of inhomogeneous and orographically structured natural landscapes,” Remote Sensing Environ. 59, 44–63 (1997).
[CrossRef]

1996 (2)

R. Richter, “A spatially adaptive fast atmospheric correction algorithm,” Int. J. Remote Sensing 17, 1201–1214 (1996).
[CrossRef]

R. Richter, “Atmospheric correction of satellite data with haze removal including a haze/clear transition region,” Comput. Geosci. 22, 675–681 (1996).
[CrossRef]

1995 (1)

S. Kalyanaraman, R. K. Rajangam, R. Rattan, “Indian remote sensing spacecraft 1C/1D,” Int. J. Remote Sensing 6, 791–799 (1995).
[CrossRef]

1994 (1)

B. C. Schaaf, X. Li, A. H. Strahler, “Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model,” IEEE Trans. Geosci. Remote Sensing 32, 1186–1193 (1994).
[CrossRef]

1993 (1)

C. Conese, M. A. Gilabert, F. Maselli, L. Bottai, “Topographic normalization of TM scenes through the use of an atmospheric correction method and digital terrain models,” Photogr. Eng. Remote Sensing 59, 1745–1753 (1993).

1992 (1)

J. R. Carter, “The effect of data precision on the calculation of slope and aspect using gridded DEMs,” Cartographica 29, 22–34 (1992).
[CrossRef]

1991 (1)

C. C. Borel, S. A. Gerstl, B. J. Powers, “The radiosity method in optical remote sensing of structured 3-D surfaces,” Remote Sensing Environ. 36, 13–44 (1991).
[CrossRef]

1990 (1)

D. W. Deering, T. F. Eck, J. Otterman, “Bidirectional reflectances of selected desert surfaces and their three-parameter soil characterisation,” Agri. Forest Meteorol. 52, 71–93 (1990).
[CrossRef]

1989 (3)

C. Proy, D. Tanre, P. Y. Deschamps, “Evaluation of topographic effects in remotely sensed data,” Remote Sensing Environ. 30, 21–32 (1989).
[CrossRef]

D. L. Civco, “Topographic normalization of Landsat Thematic Mapper digital imagery,” Photogr. Eng. Remote Sensing 55, 1303–1309 (1989).

J. C. Price, “Calibration comparison for the Landsat 4 and 5 multispectral scanners and thematic mappers,” Appl. Opt. 28, 465–471 (1989).
[CrossRef] [PubMed]

1988 (1)

Y. J. Kaufman, C. Sendra, “Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery,” Int. J. Remote Sensing 9, 1357–1381 (1988).
[CrossRef]

1987 (1)

P. N. Slater, S. F. Bigyar, R. G. Holm, R. D. Jackson, Y. Mao, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

1985 (1)

J. E. Hay, D. C. McKay, “Estimating solar irradiance on inclined surfaces: a review and assessment of methodologies,” Int. J. Sol. Energy 3, 203–240 (1985).
[CrossRef]

1984 (1)

1983 (3)

D. S. Kimes, “Dynamics of directional reflectance factor distributions for vegetated canopies,” Appl. Opt. 22, 1364–1372 (1983).
[CrossRef] [PubMed]

J. L. Engel, O. Weinstein, “The Thematic Mapper - an overview,” IEEE Trans. Geosci. Remote Sensing 21, 258–265 (1983).
[CrossRef]

R. W. Sjoberg, B. K. P. Horn, “Atmospheric effects in satellite imaging of mountainous terrain,” Appl. Opt. 22, 1701–1716 (1983).
[CrossRef]

1981 (1)

J. Dozier, J. Bruno, P. Downey, “A faster solution to the horizon problem,” Comput. Geosci. 7, 145–151 (1981).
[CrossRef]

1980 (2)

J. V. Dave, “Effect of atmospheric conditions on remote sensing of a surface nonhomogeneity,” Photogr. Eng. Remote Sensing 46, 1173–1180 (1980).

B. N. Holben, C. O. Justice, “The topographic effect on spectral response from nadir-pointing sensors,” Photogr. Eng. Remote Sensing 46, 1191–1200 (1980).

1978 (1)

Berk, A.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

Bernstein, L. S.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

Bigyar, S. F.

P. N. Slater, S. F. Bigyar, R. G. Holm, R. D. Jackson, Y. Mao, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

Borel, C. C.

C. C. Borel, S. A. Gerstl, B. J. Powers, “The radiosity method in optical remote sensing of structured 3-D surfaces,” Remote Sensing Environ. 36, 13–44 (1991).
[CrossRef]

Bottai, L.

C. Conese, M. A. Gilabert, F. Maselli, L. Bottai, “Topographic normalization of TM scenes through the use of an atmospheric correction method and digital terrain models,” Photogr. Eng. Remote Sensing 59, 1745–1753 (1993).

Bruno, J.

J. Dozier, J. Bruno, P. Downey, “A faster solution to the horizon problem,” Comput. Geosci. 7, 145–151 (1981).
[CrossRef]

Carter, J. R.

J. R. Carter, “The effect of data precision on the calculation of slope and aspect using gridded DEMs,” Cartographica 29, 22–34 (1992).
[CrossRef]

Civco, D. L.

D. L. Civco, “Topographic normalization of Landsat Thematic Mapper digital imagery,” Photogr. Eng. Remote Sensing 55, 1303–1309 (1989).

Conese, C.

C. Conese, M. A. Gilabert, F. Maselli, L. Bottai, “Topographic normalization of TM scenes through the use of an atmospheric correction method and digital terrain models,” Photogr. Eng. Remote Sensing 59, 1745–1753 (1993).

Dave, J. V.

J. V. Dave, “Effect of atmospheric conditions on remote sensing of a surface nonhomogeneity,” Photogr. Eng. Remote Sensing 46, 1173–1180 (1980).

Deering, D. W.

D. W. Deering, T. F. Eck, J. Otterman, “Bidirectional reflectances of selected desert surfaces and their three-parameter soil characterisation,” Agri. Forest Meteorol. 52, 71–93 (1990).
[CrossRef]

Deguise, J. C.

D. G. Goodenough, J. C. Deguise, M. A. Robson, “Multiple expert systems for using digital terrain models,” in Proceedings of the International Geoscience and Remote Sensing Symposium, R. Mills, ed. (Institute of Electrical and Electronic Engineers, Washington, D.C., 1990), p. 961.
[CrossRef]

Deschamps, P. Y.

C. Proy, D. Tanre, P. Y. Deschamps, “Evaluation of topographic effects in remotely sensed data,” Remote Sensing Environ. 30, 21–32 (1989).
[CrossRef]

Downey, P.

J. Dozier, J. Bruno, P. Downey, “A faster solution to the horizon problem,” Comput. Geosci. 7, 145–151 (1981).
[CrossRef]

Dozier, J.

J. Dozier, J. Bruno, P. Downey, “A faster solution to the horizon problem,” Comput. Geosci. 7, 145–151 (1981).
[CrossRef]

Eck, T. F.

D. W. Deering, T. F. Eck, J. Otterman, “Bidirectional reflectances of selected desert surfaces and their three-parameter soil characterisation,” Agri. Forest Meteorol. 52, 71–93 (1990).
[CrossRef]

Engel, J. L.

J. L. Engel, O. Weinstein, “The Thematic Mapper - an overview,” IEEE Trans. Geosci. Remote Sensing 21, 258–265 (1983).
[CrossRef]

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Gerstl, S. A.

C. C. Borel, S. A. Gerstl, B. J. Powers, “The radiosity method in optical remote sensing of structured 3-D surfaces,” Remote Sensing Environ. 36, 13–44 (1991).
[CrossRef]

Gilabert, M. A.

C. Conese, M. A. Gilabert, F. Maselli, L. Bottai, “Topographic normalization of TM scenes through the use of an atmospheric correction method and digital terrain models,” Photogr. Eng. Remote Sensing 59, 1745–1753 (1993).

Goodenough, D. G.

D. G. Goodenough, J. C. Deguise, M. A. Robson, “Multiple expert systems for using digital terrain models,” in Proceedings of the International Geoscience and Remote Sensing Symposium, R. Mills, ed. (Institute of Electrical and Electronic Engineers, Washington, D.C., 1990), p. 961.
[CrossRef]

Hay, J. E.

J. E. Hay, D. C. McKay, “Estimating solar irradiance on inclined surfaces: a review and assessment of methodologies,” Int. J. Sol. Energy 3, 203–240 (1985).
[CrossRef]

Hill, J.

J. Hill, W. Mehl, V. Radeloff, “Improved forest mapping by combining corrections of atmospheric and topographic effects in Landsat TM imagery,” in Sensors and Environmental Applications of Remote Sensing, J. Askne, ed. (Balkema, Rotterdam, The Netherlands, 1995).

Holben, B. N.

B. N. Holben, C. O. Justice, “The topographic effect on spectral response from nadir-pointing sensors,” Photogr. Eng. Remote Sensing 46, 1191–1200 (1980).

Holm, R. G.

P. N. Slater, S. F. Bigyar, R. G. Holm, R. D. Jackson, Y. Mao, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

Horn, B. K. P.

R. W. Sjoberg, B. K. P. Horn, “Atmospheric effects in satellite imaging of mountainous terrain,” Appl. Opt. 22, 1701–1716 (1983).
[CrossRef]

Itten, K. I.

S. Sandmeier, K. I. Itten, “A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain,” IEEE Trans. Geosci. Remote Sensing 35, 708–717 (1997).
[CrossRef]

Jackson, R. D.

P. N. Slater, S. F. Bigyar, R. G. Holm, R. D. Jackson, Y. Mao, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

Justice, C. O.

B. N. Holben, C. O. Justice, “The topographic effect on spectral response from nadir-pointing sensors,” Photogr. Eng. Remote Sensing 46, 1191–1200 (1980).

Kalyanaraman, S.

S. Kalyanaraman, R. K. Rajangam, R. Rattan, “Indian remote sensing spacecraft 1C/1D,” Int. J. Remote Sensing 6, 791–799 (1995).
[CrossRef]

Kaufman, Y. J.

Y. J. Kaufman, C. Sendra, “Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery,” Int. J. Remote Sensing 9, 1357–1381 (1988).
[CrossRef]

Y. J. Kaufman, “Atmospheric effect on spatial resolution of surface imagery,” Appl. Opt. 23, 3400–3408 (1984).
[CrossRef] [PubMed]

Kimes, D. S.

Kriebel, K. T.

Li, X.

B. C. Schaaf, X. Li, A. H. Strahler, “Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model,” IEEE Trans. Geosci. Remote Sensing 32, 1186–1193 (1994).
[CrossRef]

Mao, Y.

P. N. Slater, S. F. Bigyar, R. G. Holm, R. D. Jackson, Y. Mao, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

Maselli, F.

C. Conese, M. A. Gilabert, F. Maselli, L. Bottai, “Topographic normalization of TM scenes through the use of an atmospheric correction method and digital terrain models,” Photogr. Eng. Remote Sensing 59, 1745–1753 (1993).

McKay, D. C.

J. E. Hay, D. C. McKay, “Estimating solar irradiance on inclined surfaces: a review and assessment of methodologies,” Int. J. Sol. Energy 3, 203–240 (1985).
[CrossRef]

Mehl, W.

J. Hill, W. Mehl, V. Radeloff, “Improved forest mapping by combining corrections of atmospheric and topographic effects in Landsat TM imagery,” in Sensors and Environmental Applications of Remote Sensing, J. Askne, ed. (Balkema, Rotterdam, The Netherlands, 1995).

Otterman, J.

D. W. Deering, T. F. Eck, J. Otterman, “Bidirectional reflectances of selected desert surfaces and their three-parameter soil characterisation,” Agri. Forest Meteorol. 52, 71–93 (1990).
[CrossRef]

Palmer, J. M.

P. N. Slater, S. F. Bigyar, R. G. Holm, R. D. Jackson, Y. Mao, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

Powers, B. J.

C. C. Borel, S. A. Gerstl, B. J. Powers, “The radiosity method in optical remote sensing of structured 3-D surfaces,” Remote Sensing Environ. 36, 13–44 (1991).
[CrossRef]

Price, J. C.

Proy, C.

C. Proy, D. Tanre, P. Y. Deschamps, “Evaluation of topographic effects in remotely sensed data,” Remote Sensing Environ. 30, 21–32 (1989).
[CrossRef]

Radeloff, V.

J. Hill, W. Mehl, V. Radeloff, “Improved forest mapping by combining corrections of atmospheric and topographic effects in Landsat TM imagery,” in Sensors and Environmental Applications of Remote Sensing, J. Askne, ed. (Balkema, Rotterdam, The Netherlands, 1995).

Rajangam, R. K.

S. Kalyanaraman, R. K. Rajangam, R. Rattan, “Indian remote sensing spacecraft 1C/1D,” Int. J. Remote Sensing 6, 791–799 (1995).
[CrossRef]

Rattan, R.

S. Kalyanaraman, R. K. Rajangam, R. Rattan, “Indian remote sensing spacecraft 1C/1D,” Int. J. Remote Sensing 6, 791–799 (1995).
[CrossRef]

Richter, R.

R. Richter, “Correction of atmospheric and topographic effects for high spatial resolution satellite imagery,” Int. J. Remote Sensing 18, 1099–1111 (1997).
[CrossRef]

R. Richter, “Atmospheric correction of satellite data with haze removal including a haze/clear transition region,” Comput. Geosci. 22, 675–681 (1996).
[CrossRef]

R. Richter, “A spatially adaptive fast atmospheric correction algorithm,” Int. J. Remote Sensing 17, 1201–1214 (1996).
[CrossRef]

Robertson, D. C.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

Robson, M. A.

D. G. Goodenough, J. C. Deguise, M. A. Robson, “Multiple expert systems for using digital terrain models,” in Proceedings of the International Geoscience and Remote Sensing Symposium, R. Mills, ed. (Institute of Electrical and Electronic Engineers, Washington, D.C., 1990), p. 961.
[CrossRef]

Sandmeier, S.

S. Sandmeier, K. I. Itten, “A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain,” IEEE Trans. Geosci. Remote Sensing 35, 708–717 (1997).
[CrossRef]

Schaaf, B. C.

B. C. Schaaf, X. Li, A. H. Strahler, “Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model,” IEEE Trans. Geosci. Remote Sensing 32, 1186–1193 (1994).
[CrossRef]

Sendra, C.

Y. J. Kaufman, C. Sendra, “Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery,” Int. J. Remote Sensing 9, 1357–1381 (1988).
[CrossRef]

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Sjoberg, R. W.

R. W. Sjoberg, B. K. P. Horn, “Atmospheric effects in satellite imaging of mountainous terrain,” Appl. Opt. 22, 1701–1716 (1983).
[CrossRef]

Slater, P. N.

P. N. Slater, S. F. Bigyar, R. G. Holm, R. D. Jackson, Y. Mao, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

P. N. Slater, Remote Sensing: Optics and Optical Systems (Addison-Wesley, Reading, Mass., 1980).

Strahler, A. H.

B. C. Schaaf, X. Li, A. H. Strahler, “Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model,” IEEE Trans. Geosci. Remote Sensing 32, 1186–1193 (1994).
[CrossRef]

Tanre, D.

C. Proy, D. Tanre, P. Y. Deschamps, “Evaluation of topographic effects in remotely sensed data,” Remote Sensing Environ. 30, 21–32 (1989).
[CrossRef]

Thomas, W.

W. Thomas, “A three-dimensional model for calculating the reflection functions of inhomogeneous and orographically structured natural landscapes,” Remote Sensing Environ. 59, 44–63 (1997).
[CrossRef]

Weinstein, O.

J. L. Engel, O. Weinstein, “The Thematic Mapper - an overview,” IEEE Trans. Geosci. Remote Sensing 21, 258–265 (1983).
[CrossRef]

Yuan, B.

P. N. Slater, S. F. Bigyar, R. G. Holm, R. D. Jackson, Y. Mao, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

Agri. Forest Meteorol. (1)

D. W. Deering, T. F. Eck, J. Otterman, “Bidirectional reflectances of selected desert surfaces and their three-parameter soil characterisation,” Agri. Forest Meteorol. 52, 71–93 (1990).
[CrossRef]

Appl. Opt. (5)

Cartographica (1)

J. R. Carter, “The effect of data precision on the calculation of slope and aspect using gridded DEMs,” Cartographica 29, 22–34 (1992).
[CrossRef]

Comput. Geosci. (2)

J. Dozier, J. Bruno, P. Downey, “A faster solution to the horizon problem,” Comput. Geosci. 7, 145–151 (1981).
[CrossRef]

R. Richter, “Atmospheric correction of satellite data with haze removal including a haze/clear transition region,” Comput. Geosci. 22, 675–681 (1996).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing (3)

S. Sandmeier, K. I. Itten, “A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain,” IEEE Trans. Geosci. Remote Sensing 35, 708–717 (1997).
[CrossRef]

B. C. Schaaf, X. Li, A. H. Strahler, “Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model,” IEEE Trans. Geosci. Remote Sensing 32, 1186–1193 (1994).
[CrossRef]

J. L. Engel, O. Weinstein, “The Thematic Mapper - an overview,” IEEE Trans. Geosci. Remote Sensing 21, 258–265 (1983).
[CrossRef]

Int. J. Remote Sensing (4)

S. Kalyanaraman, R. K. Rajangam, R. Rattan, “Indian remote sensing spacecraft 1C/1D,” Int. J. Remote Sensing 6, 791–799 (1995).
[CrossRef]

Y. J. Kaufman, C. Sendra, “Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery,” Int. J. Remote Sensing 9, 1357–1381 (1988).
[CrossRef]

R. Richter, “Correction of atmospheric and topographic effects for high spatial resolution satellite imagery,” Int. J. Remote Sensing 18, 1099–1111 (1997).
[CrossRef]

R. Richter, “A spatially adaptive fast atmospheric correction algorithm,” Int. J. Remote Sensing 17, 1201–1214 (1996).
[CrossRef]

Int. J. Sol. Energy (1)

J. E. Hay, D. C. McKay, “Estimating solar irradiance on inclined surfaces: a review and assessment of methodologies,” Int. J. Sol. Energy 3, 203–240 (1985).
[CrossRef]

Photogr. Eng. Remote Sensing (4)

J. V. Dave, “Effect of atmospheric conditions on remote sensing of a surface nonhomogeneity,” Photogr. Eng. Remote Sensing 46, 1173–1180 (1980).

C. Conese, M. A. Gilabert, F. Maselli, L. Bottai, “Topographic normalization of TM scenes through the use of an atmospheric correction method and digital terrain models,” Photogr. Eng. Remote Sensing 59, 1745–1753 (1993).

B. N. Holben, C. O. Justice, “The topographic effect on spectral response from nadir-pointing sensors,” Photogr. Eng. Remote Sensing 46, 1191–1200 (1980).

D. L. Civco, “Topographic normalization of Landsat Thematic Mapper digital imagery,” Photogr. Eng. Remote Sensing 55, 1303–1309 (1989).

Remote Sensing Environ. (4)

C. Proy, D. Tanre, P. Y. Deschamps, “Evaluation of topographic effects in remotely sensed data,” Remote Sensing Environ. 30, 21–32 (1989).
[CrossRef]

P. N. Slater, S. F. Bigyar, R. G. Holm, R. D. Jackson, Y. Mao, J. M. Palmer, B. Yuan, “Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sensing Environ. 22, 11–37 (1987).
[CrossRef]

W. Thomas, “A three-dimensional model for calculating the reflection functions of inhomogeneous and orographically structured natural landscapes,” Remote Sensing Environ. 59, 44–63 (1997).
[CrossRef]

C. C. Borel, S. A. Gerstl, B. J. Powers, “The radiosity method in optical remote sensing of structured 3-D surfaces,” Remote Sensing Environ. 36, 13–44 (1991).
[CrossRef]

Other (7)

D. G. Goodenough, J. C. Deguise, M. A. Robson, “Multiple expert systems for using digital terrain models,” in Proceedings of the International Geoscience and Remote Sensing Symposium, R. Mills, ed. (Institute of Electrical and Electronic Engineers, Washington, D.C., 1990), p. 961.
[CrossRef]

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

E. P. Shettle, R. W. Fenn, “Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

M. D. Keister, project ed., Multispectral Imagery Reference Guide (Logicon Geodynamics, Fairfax, Va., 1997).

J. Hill, W. Mehl, V. Radeloff, “Improved forest mapping by combining corrections of atmospheric and topographic effects in Landsat TM imagery,” in Sensors and Environmental Applications of Remote Sensing, J. Askne, ed. (Balkema, Rotterdam, The Netherlands, 1995).

ERDAS Field Guide, 2nd ed., version 7.5, (ERDAS, Inc., Atlanta, Ga., 1991), pp. 169–190.

P. N. Slater, Remote Sensing: Optics and Optical Systems (Addison-Wesley, Reading, Mass., 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Radiation components taken into account in the ATCOR3 model.

Fig. 2
Fig. 2

Influence of the number of iterations on the average terrain reflectance.

Fig. 3
Fig. 3

Bidirectional reflectance of a coniferous forest.

Fig. 4
Fig. 4

Geometric function G for options (a) and (b). Threshold angles of 60°, 65°, and 70° are represented by dashed, dotted, and solid curves, respectively, g = 0.25. The shaded region indicates the range of incident angles encountered for the selected sample geometry (nadir view, solar zenith angle of 35°, maximum slope of 40°).

Fig. 5
Fig. 5

Block diagram of the main processing steps of the ATCOR3 model.

Fig. 6
Fig. 6

Relative irradiance error as a function of the solar incident angle β for DEM slope errors Δα = 1°, 2°, and 3° (solid, dotted, and dashed curves, respectively) evaluated in the principal plane.

Fig. 7
Fig. 7

Influence of a 3° DEM slope error on the reflectance in TM bands 1, 4, and 7 (solid, dotted, and dashed curves, respectively). The simulation parameters are mid-latitude summer atmosphere, rural aerosol, 23-km visibility, 1.5-km ground elevation, solar zenith angle θ S = 40°, incident angle β in the principal plane, slope angle α = θ n = β - θ S .

Fig. 8
Fig. 8

Influence of a spatially inadequate DEM and a subpixel misregistration. Top, distribution of different slope elements in an image pixel and definition of two configurations. Bottom, relative reflectance error as a function of wavelength. The symbols mark Landsat TM bands 1, 4, and 7. The simulation parameters are the same as in Fig. 4.

Fig. 9
Fig. 9

Direct and diffuse solar fluxes as a function of altitude (ATCOR3 database): diamond, 23-km visibility; asterisk, 10-km visibility. The top line represents the direct solar flux, the lower line the diffuse flux. Mid-latitude summer atmosphere with a rural aerosol and a solar zenith angle of 30°.

Fig. 10
Fig. 10

Digital elevation image and Landsat TM band 4 images, see text. Top, DEM (left), sky view factor (right); middle, illumination image (left), original TM band 4 image (right); bottom, reflectance images without (left) and with separate processing of low illumination areas (right).

Fig. 11
Fig. 11

Coniferous spectrum: solid curve, atmospheric and topographic correction, slope of 30°, aspect to Sun; dashed curve, only atmospheric correction.

Fig. 12
Fig. 12

Regression analysis for TM band 4 data of a coniferous forest. The reflectance values in the bottom graph were cut at the 10% and 25% reflectance levels to separate the coniferous forest from other vegetation cover types.

Tables (1)

Tables Icon

Table 1 Coding of the Optical Depth Channel with the Visibility Indexa

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

L 1 = τ v ρ π E dir + E dif ,
L 2 = L p   path radiance from radiative transfer code ,
L 3 = τ v ρ π   ρ ¯ terrain E g ,
L sat = c 0 + c 1   DN .
L sat = c 0 + c 1   DN = L 1 + L 2 + L 3 ,
ρ = π d 2 L sat - L p τ v E dir + E dif + ρ ¯ terrain E g .
ρ i x ,   y = π d 2 c 0 + c 1   DN x ,   y - L p z τ v z bE s τ s z cos   β x ,   y + E d * x ,   y ,   z + E g z ρ ¯ terrain i V terrain x ,   y / π ,
E d * x ,   y ,   z = E d z b τ s z cos   β x ,   y / cos   θ s + 1 - b τ s z V sky x ,   y .
V sky x ,   y = 1 - V terrain x ,   y .
cos   β x ,   y = cos   θ s   cos   θ n x ,   y + sin   θ s   sin   θ n x ,   y cos ϕ s - ϕ n x ,   y .
ρ f x ,   y = ρ x ,   y + q ρ x ,   y - ρ ¯ x ,   y .
ρ f x ,   y = ρ x ,   y + q ρ x ,   y - 0 R   ρ r A r exp - r / r s d r .
ρ f x ,   y = ρ x ,   y + q ρ x ,   y - i = 1 n R   ρ ¯ i w i ,
w i = 1 i = 1 n R   W i   W i , W i = r i - 1 r i   A r exp - r d r r i - 1 r i 2 r 2 exp - r d r .
G = cos   β i / cos   β T ,
G = cos   β i / cos   β T 1 / 2
G = cos   β i   cos   β e / cos   β T ,
G = cos   β i   cos   β e / cos   β T 1 / 2 .
ρ g = ρ f G .
Δ I = cos   β / cos β + Δ α - 1 × 100 .
Δ ρ = τ S E S   cos   β + E dif   cos 2 α / 2 τ S E S   cos β + 3 ° + E dif   cos 2 α + 3 ° / 2 - 1 × 100 .
Δ ρ = τ S E S   cos   β + E dif   cos 2 α / 2 1 n i = 1 n   τ S E S   cos   β i + E dif   cos 2 α i / 2 - 1 × 100 ,

Metrics