Abstract

A compact, lightweight, low-power-consumption source of tunable, narrow-bandwidth blue and UV radiation is described. In this source, a single-longitudinal-mode diode laser seeds a pulsed, GaAlAs tapered amplifier whose ∼860-nm output is frequency quadrupled by two stages of single-pass frequency doubling. Performance of the laser system is characterized over a wide range of amplifier duty cycles (0.1–1.0), pulse durations (50 ns–1.0 μs), peak currents (≤14 A), and average currents (≤2.0 A). The capabilities and limitations of this source are discussed. We recorded high-resolution, Doppler-limited absorption spectra of nitric oxide and sulfur dioxide near 215 nm; the SO2 spectrum was found to have significantly more structure and higher peak absorption cross sections than previously reported.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), pp. 163–272.
  2. Y. Zhang, D. H. Stedman, G. A. Bishop, S. P. Beaton, P. L. Guenther, I. F. McVey, “Enhancement of remote sensing for mobile source nitric oxide,” J. Air Waste Manage. Assoc. 46, 25–29 (1996).
    [CrossRef]
  3. C. Zimmermann, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
    [CrossRef]
  4. K. Mizuuchi, K. Yamamoto, “Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3,” Opt. Lett. 21, 107–109 (1996).
    [CrossRef] [PubMed]
  5. Y. Uchiyama, M. Tsuchiya, H.-F. Liu, T. Kamiya, “Efficient ultraviolet-light (345-nm) generation in a bulk LiIO3 crystal by frequency doubling of a self-seeded gain-switched AlGaInP Fabry–Perot semiconductor laser,” Opt. Lett. 22, 78–80 (1997).
    [CrossRef] [PubMed]
  6. J. J. Zayhowski, “Ultraviolet generation with passively Q-switched microchip lasers,” Opt. Lett. 21, 588–590 (1996);erratum, 21, 1618 (1996).
  7. L. Goldberg, D. A. V. Kliner, “Deep-UV generation by frequency quadrupling of a high-power GaAlAs semiconductor laser,” Opt. Lett. 20, 1145–1147 (1995).
    [CrossRef] [PubMed]
  8. L. Goldberg, D. A. V. Kliner, “Tunable UV generation at 286 nm by frequency tripling of a high-power mode-locked semiconductor laser,” Opt. Lett. 20, 1640–1642 (1995).
    [CrossRef] [PubMed]
  9. D. A. V. Kliner, J. P. Koplow, L. Goldberg, “Narrow-band, tunable, semiconductor-laser-based source for deep-UV absorption spectroscopy,” Opt. Lett. 22, 1418–1420 (1997).
    [CrossRef]
  10. G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford University, New York, 1986), p. 45.
  11. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1991).
  12. L. Goldberg, D. Mehuys, “Blue light generation using a high power tapered amplifier mode-locked laser,” Appl. Phys. Lett. 65, 522–524 (1994).
    [CrossRef]
  13. L. Goldberg, M. R. Surette, D. Mehuys, “Filament formation in a tapered GaAlAs optical amplifier,” Appl. Phys. Lett. 62, 2304–2306 (1993).
    [CrossRef]
  14. L. Goldberg, D. Mehuys, M. R. Surette, D. C. Hall, “High-power, near-diffraction-limited large-area traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 29, 2028–2043 (1993).
    [CrossRef]
  15. R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
    [CrossRef]
  16. L. Goldberg, D. Mehuys, D. Welch, “High power mode-locked compound laser using a tapered semiconductor amplifier,” IEEE Photon. Technol. Lett. 6, 1070–1072 (1994).
    [CrossRef]
  17. J.-C. Baumert, P. Günter, H. Melchior, “High efficiency second-harmonic generation in KNbO3 crystals,” Opt. Commun. 48, 215–220 (1983).
    [CrossRef]
  18. H. Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978); J. A. Coxon, D. A. Ramsay, “The A2Σi - X2Σi band system of ClO: reinvestigation of the absorption spectrum,” Can. J. Phys. 54, 1034–1042 (1976); J. D. Bradshaw, M. O. Rodgers, D. D. Davis, “Single photon laser-induced fluorescence detection of NO and SO2 for atmospheric conditions of composition and pressure,” Appl. Opt. 21, 2493–2500 (1982).
    [CrossRef] [PubMed]
  19. G. C. Turk, “Analytical performance of laser-enhanced ionization in flames,” in Laser-Enhanced Ionization Spectrometry, J. C. Travis, G. C. Turk, eds. (Wiley, New York, 1996), pp. 161–211.
  20. R. P. Wayne, Chemistry of Atmospheres (Oxford University, New York, 1991).
  21. I. Glassman, Combustion (Academic, San Diego, Calif., 1996).
  22. A. J. D. Farmer, V. Hasson, R. W. Nicholls, “Absolute oscillator strength measurements of the (ν″ = 0, ν′ = 0 - 3) bands of the (A2Σ - X2Π) γ-system of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 12, 627–633 (1972);W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982);J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+ - X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992);R. N. Zare, Angular Momentum (Wiley, New York, 1988), p. 314.
    [CrossRef]
  23. D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution absorption cross section measurements of SO2 at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1984); T. Ebata, O. Nakazawa, M. Ito, “Rovibrational dependences on the C 1B2 state of SO2,” Chem. Phys. Lett. 143, 31–37 (1988) recorded SO2 absorption spectra with 6-GHz resolution between 215 and 222 nm, although these authors did not report absolute absorption cross sections.
  24. D. Mehuys, L. Goldberg, D. F. Welch, “5.25-W cw near-diffraction-limited tapered-stripe semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 5, 1179–1182 (1993).
    [CrossRef]

1997

1996

1995

1994

L. Goldberg, D. Mehuys, “Blue light generation using a high power tapered amplifier mode-locked laser,” Appl. Phys. Lett. 65, 522–524 (1994).
[CrossRef]

L. Goldberg, D. Mehuys, D. Welch, “High power mode-locked compound laser using a tapered semiconductor amplifier,” IEEE Photon. Technol. Lett. 6, 1070–1072 (1994).
[CrossRef]

1993

D. Mehuys, L. Goldberg, D. F. Welch, “5.25-W cw near-diffraction-limited tapered-stripe semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 5, 1179–1182 (1993).
[CrossRef]

L. Goldberg, M. R. Surette, D. Mehuys, “Filament formation in a tapered GaAlAs optical amplifier,” Appl. Phys. Lett. 62, 2304–2306 (1993).
[CrossRef]

L. Goldberg, D. Mehuys, M. R. Surette, D. C. Hall, “High-power, near-diffraction-limited large-area traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 29, 2028–2043 (1993).
[CrossRef]

1990

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

1984

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution absorption cross section measurements of SO2 at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1984); T. Ebata, O. Nakazawa, M. Ito, “Rovibrational dependences on the C 1B2 state of SO2,” Chem. Phys. Lett. 143, 31–37 (1988) recorded SO2 absorption spectra with 6-GHz resolution between 215 and 222 nm, although these authors did not report absolute absorption cross sections.

1983

J.-C. Baumert, P. Günter, H. Melchior, “High efficiency second-harmonic generation in KNbO3 crystals,” Opt. Commun. 48, 215–220 (1983).
[CrossRef]

1972

A. J. D. Farmer, V. Hasson, R. W. Nicholls, “Absolute oscillator strength measurements of the (ν″ = 0, ν′ = 0 - 3) bands of the (A2Σ - X2Π) γ-system of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 12, 627–633 (1972);W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982);J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+ - X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992);R. N. Zare, Angular Momentum (Wiley, New York, 1988), p. 314.
[CrossRef]

Baumert, J.-C.

J.-C. Baumert, P. Günter, H. Melchior, “High efficiency second-harmonic generation in KNbO3 crystals,” Opt. Commun. 48, 215–220 (1983).
[CrossRef]

Beaton, S. P.

Y. Zhang, D. H. Stedman, G. A. Bishop, S. P. Beaton, P. L. Guenther, I. F. McVey, “Enhancement of remote sensing for mobile source nitric oxide,” J. Air Waste Manage. Assoc. 46, 25–29 (1996).
[CrossRef]

Bishop, G. A.

Y. Zhang, D. H. Stedman, G. A. Bishop, S. P. Beaton, P. L. Guenther, I. F. McVey, “Enhancement of remote sensing for mobile source nitric oxide,” J. Air Waste Manage. Assoc. 46, 25–29 (1996).
[CrossRef]

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1991).

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Esmond, J. R.

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution absorption cross section measurements of SO2 at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1984); T. Ebata, O. Nakazawa, M. Ito, “Rovibrational dependences on the C 1B2 state of SO2,” Chem. Phys. Lett. 143, 31–37 (1988) recorded SO2 absorption spectra with 6-GHz resolution between 215 and 222 nm, although these authors did not report absolute absorption cross sections.

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Farmer, A. J. D.

A. J. D. Farmer, V. Hasson, R. W. Nicholls, “Absolute oscillator strength measurements of the (ν″ = 0, ν′ = 0 - 3) bands of the (A2Σ - X2Π) γ-system of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 12, 627–633 (1972);W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982);J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+ - X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992);R. N. Zare, Angular Momentum (Wiley, New York, 1988), p. 314.
[CrossRef]

Fleming, G. R.

G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford University, New York, 1986), p. 45.

Freeman, D. E.

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution absorption cross section measurements of SO2 at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1984); T. Ebata, O. Nakazawa, M. Ito, “Rovibrational dependences on the C 1B2 state of SO2,” Chem. Phys. Lett. 143, 31–37 (1988) recorded SO2 absorption spectra with 6-GHz resolution between 215 and 222 nm, although these authors did not report absolute absorption cross sections.

Glassman, I.

I. Glassman, Combustion (Academic, San Diego, Calif., 1996).

Goldberg, L.

D. A. V. Kliner, J. P. Koplow, L. Goldberg, “Narrow-band, tunable, semiconductor-laser-based source for deep-UV absorption spectroscopy,” Opt. Lett. 22, 1418–1420 (1997).
[CrossRef]

L. Goldberg, D. A. V. Kliner, “Deep-UV generation by frequency quadrupling of a high-power GaAlAs semiconductor laser,” Opt. Lett. 20, 1145–1147 (1995).
[CrossRef] [PubMed]

L. Goldberg, D. A. V. Kliner, “Tunable UV generation at 286 nm by frequency tripling of a high-power mode-locked semiconductor laser,” Opt. Lett. 20, 1640–1642 (1995).
[CrossRef] [PubMed]

L. Goldberg, D. Mehuys, “Blue light generation using a high power tapered amplifier mode-locked laser,” Appl. Phys. Lett. 65, 522–524 (1994).
[CrossRef]

L. Goldberg, D. Mehuys, D. Welch, “High power mode-locked compound laser using a tapered semiconductor amplifier,” IEEE Photon. Technol. Lett. 6, 1070–1072 (1994).
[CrossRef]

L. Goldberg, D. Mehuys, M. R. Surette, D. C. Hall, “High-power, near-diffraction-limited large-area traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 29, 2028–2043 (1993).
[CrossRef]

D. Mehuys, L. Goldberg, D. F. Welch, “5.25-W cw near-diffraction-limited tapered-stripe semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 5, 1179–1182 (1993).
[CrossRef]

L. Goldberg, M. R. Surette, D. Mehuys, “Filament formation in a tapered GaAlAs optical amplifier,” Appl. Phys. Lett. 62, 2304–2306 (1993).
[CrossRef]

Guenther, P. L.

Y. Zhang, D. H. Stedman, G. A. Bishop, S. P. Beaton, P. L. Guenther, I. F. McVey, “Enhancement of remote sensing for mobile source nitric oxide,” J. Air Waste Manage. Assoc. 46, 25–29 (1996).
[CrossRef]

Günter, P.

J.-C. Baumert, P. Günter, H. Melchior, “High efficiency second-harmonic generation in KNbO3 crystals,” Opt. Commun. 48, 215–220 (1983).
[CrossRef]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1991).

Hall, D. C.

L. Goldberg, D. Mehuys, M. R. Surette, D. C. Hall, “High-power, near-diffraction-limited large-area traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 29, 2028–2043 (1993).
[CrossRef]

Hänsch, T. W.

C. Zimmermann, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

Hasson, V.

A. J. D. Farmer, V. Hasson, R. W. Nicholls, “Absolute oscillator strength measurements of the (ν″ = 0, ν′ = 0 - 3) bands of the (A2Σ - X2Π) γ-system of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 12, 627–633 (1972);W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982);J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+ - X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992);R. N. Zare, Angular Momentum (Wiley, New York, 1988), p. 314.
[CrossRef]

Hemmerich, A.

C. Zimmermann, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

Hinkley, E. D.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), pp. 163–272.

Kamiya, T.

Kliner, D. A. V.

Koplow, J. P.

Liu, H.-F.

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

McVey, I. F.

Y. Zhang, D. H. Stedman, G. A. Bishop, S. P. Beaton, P. L. Guenther, I. F. McVey, “Enhancement of remote sensing for mobile source nitric oxide,” J. Air Waste Manage. Assoc. 46, 25–29 (1996).
[CrossRef]

Mehuys, D.

L. Goldberg, D. Mehuys, “Blue light generation using a high power tapered amplifier mode-locked laser,” Appl. Phys. Lett. 65, 522–524 (1994).
[CrossRef]

L. Goldberg, D. Mehuys, D. Welch, “High power mode-locked compound laser using a tapered semiconductor amplifier,” IEEE Photon. Technol. Lett. 6, 1070–1072 (1994).
[CrossRef]

L. Goldberg, D. Mehuys, M. R. Surette, D. C. Hall, “High-power, near-diffraction-limited large-area traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 29, 2028–2043 (1993).
[CrossRef]

L. Goldberg, M. R. Surette, D. Mehuys, “Filament formation in a tapered GaAlAs optical amplifier,” Appl. Phys. Lett. 62, 2304–2306 (1993).
[CrossRef]

D. Mehuys, L. Goldberg, D. F. Welch, “5.25-W cw near-diffraction-limited tapered-stripe semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 5, 1179–1182 (1993).
[CrossRef]

Melchior, H.

J.-C. Baumert, P. Günter, H. Melchior, “High efficiency second-harmonic generation in KNbO3 crystals,” Opt. Commun. 48, 215–220 (1983).
[CrossRef]

Menzies, R. T.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), pp. 163–272.

Mizuuchi, K.

Nicholls, R. W.

A. J. D. Farmer, V. Hasson, R. W. Nicholls, “Absolute oscillator strength measurements of the (ν″ = 0, ν′ = 0 - 3) bands of the (A2Σ - X2Π) γ-system of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 12, 627–633 (1972);W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982);J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+ - X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992);R. N. Zare, Angular Momentum (Wiley, New York, 1988), p. 314.
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1991).

Okabe, H.

H. Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978); J. A. Coxon, D. A. Ramsay, “The A2Σi - X2Σi band system of ClO: reinvestigation of the absorption spectrum,” Can. J. Phys. 54, 1034–1042 (1976); J. D. Bradshaw, M. O. Rodgers, D. D. Davis, “Single photon laser-induced fluorescence detection of NO and SO2 for atmospheric conditions of composition and pressure,” Appl. Opt. 21, 2493–2500 (1982).
[CrossRef] [PubMed]

Parkinson, W. H.

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution absorption cross section measurements of SO2 at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1984); T. Ebata, O. Nakazawa, M. Ito, “Rovibrational dependences on the C 1B2 state of SO2,” Chem. Phys. Lett. 143, 31–37 (1988) recorded SO2 absorption spectra with 6-GHz resolution between 215 and 222 nm, although these authors did not report absolute absorption cross sections.

Stedman, D. H.

Y. Zhang, D. H. Stedman, G. A. Bishop, S. P. Beaton, P. L. Guenther, I. F. McVey, “Enhancement of remote sensing for mobile source nitric oxide,” J. Air Waste Manage. Assoc. 46, 25–29 (1996).
[CrossRef]

Surette, M. R.

L. Goldberg, M. R. Surette, D. Mehuys, “Filament formation in a tapered GaAlAs optical amplifier,” Appl. Phys. Lett. 62, 2304–2306 (1993).
[CrossRef]

L. Goldberg, D. Mehuys, M. R. Surette, D. C. Hall, “High-power, near-diffraction-limited large-area traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 29, 2028–2043 (1993).
[CrossRef]

Tsuchiya, M.

Turk, G. C.

G. C. Turk, “Analytical performance of laser-enhanced ionization in flames,” in Laser-Enhanced Ionization Spectrometry, J. C. Travis, G. C. Turk, eds. (Wiley, New York, 1996), pp. 161–211.

Uchiyama, Y.

Vuletic, V.

C. Zimmermann, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

Wayne, R. P.

R. P. Wayne, Chemistry of Atmospheres (Oxford University, New York, 1991).

Webster, C. R.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), pp. 163–272.

Welch, D.

L. Goldberg, D. Mehuys, D. Welch, “High power mode-locked compound laser using a tapered semiconductor amplifier,” IEEE Photon. Technol. Lett. 6, 1070–1072 (1994).
[CrossRef]

Welch, D. F.

D. Mehuys, L. Goldberg, D. F. Welch, “5.25-W cw near-diffraction-limited tapered-stripe semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 5, 1179–1182 (1993).
[CrossRef]

Yamamoto, K.

Yoshino, K.

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution absorption cross section measurements of SO2 at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1984); T. Ebata, O. Nakazawa, M. Ito, “Rovibrational dependences on the C 1B2 state of SO2,” Chem. Phys. Lett. 143, 31–37 (1988) recorded SO2 absorption spectra with 6-GHz resolution between 215 and 222 nm, although these authors did not report absolute absorption cross sections.

Zayhowski, J. J.

Zhang, Y.

Y. Zhang, D. H. Stedman, G. A. Bishop, S. P. Beaton, P. L. Guenther, I. F. McVey, “Enhancement of remote sensing for mobile source nitric oxide,” J. Air Waste Manage. Assoc. 46, 25–29 (1996).
[CrossRef]

Zimmermann, C.

C. Zimmermann, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

Appl. Phys. Lett.

C. Zimmermann, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

L. Goldberg, D. Mehuys, “Blue light generation using a high power tapered amplifier mode-locked laser,” Appl. Phys. Lett. 65, 522–524 (1994).
[CrossRef]

L. Goldberg, M. R. Surette, D. Mehuys, “Filament formation in a tapered GaAlAs optical amplifier,” Appl. Phys. Lett. 62, 2304–2306 (1993).
[CrossRef]

IEEE J. Quantum Electron.

L. Goldberg, D. Mehuys, M. R. Surette, D. C. Hall, “High-power, near-diffraction-limited large-area traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 29, 2028–2043 (1993).
[CrossRef]

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Goldberg, D. Mehuys, D. Welch, “High power mode-locked compound laser using a tapered semiconductor amplifier,” IEEE Photon. Technol. Lett. 6, 1070–1072 (1994).
[CrossRef]

D. Mehuys, L. Goldberg, D. F. Welch, “5.25-W cw near-diffraction-limited tapered-stripe semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 5, 1179–1182 (1993).
[CrossRef]

J. Air Waste Manage. Assoc.

Y. Zhang, D. H. Stedman, G. A. Bishop, S. P. Beaton, P. L. Guenther, I. F. McVey, “Enhancement of remote sensing for mobile source nitric oxide,” J. Air Waste Manage. Assoc. 46, 25–29 (1996).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

A. J. D. Farmer, V. Hasson, R. W. Nicholls, “Absolute oscillator strength measurements of the (ν″ = 0, ν′ = 0 - 3) bands of the (A2Σ - X2Π) γ-system of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 12, 627–633 (1972);W. G. Mallard, J. H. Miller, K. C. Smyth, “Resonantly enhanced two-photon photoionization of NO in an atmospheric flame,” J. Chem. Phys. 76, 3483–3492 (1982);J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+ - X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992);R. N. Zare, Angular Momentum (Wiley, New York, 1988), p. 314.
[CrossRef]

Opt. Commun.

J.-C. Baumert, P. Günter, H. Melchior, “High efficiency second-harmonic generation in KNbO3 crystals,” Opt. Commun. 48, 215–220 (1983).
[CrossRef]

Opt. Lett.

Planet. Space Sci.

D. E. Freeman, K. Yoshino, J. R. Esmond, W. H. Parkinson, “High resolution absorption cross section measurements of SO2 at 213 K in the wavelength region 172–240 nm,” Planet. Space Sci. 32, 1125–1134 (1984); T. Ebata, O. Nakazawa, M. Ito, “Rovibrational dependences on the C 1B2 state of SO2,” Chem. Phys. Lett. 143, 31–37 (1988) recorded SO2 absorption spectra with 6-GHz resolution between 215 and 222 nm, although these authors did not report absolute absorption cross sections.

Other

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), pp. 163–272.

G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford University, New York, 1986), p. 45.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1991).

H. Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978); J. A. Coxon, D. A. Ramsay, “The A2Σi - X2Σi band system of ClO: reinvestigation of the absorption spectrum,” Can. J. Phys. 54, 1034–1042 (1976); J. D. Bradshaw, M. O. Rodgers, D. D. Davis, “Single photon laser-induced fluorescence detection of NO and SO2 for atmospheric conditions of composition and pressure,” Appl. Opt. 21, 2493–2500 (1982).
[CrossRef] [PubMed]

G. C. Turk, “Analytical performance of laser-enhanced ionization in flames,” in Laser-Enhanced Ionization Spectrometry, J. C. Travis, G. C. Turk, eds. (Wiley, New York, 1996), pp. 161–211.

R. P. Wayne, Chemistry of Atmospheres (Oxford University, New York, 1991).

I. Glassman, Combustion (Academic, San Diego, Calif., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the laser system: FI, Faraday isolator; λ/2, half-wave plate.

Fig. 2
Fig. 2

Peak IR power versus peak current for a TA operated at a 6.7-kHz repetition rate with a 100-ns pulse duration (duty cycle of 6.7 × 10-4). The solid line, which is a linear least-squares fit to the points, provides the slope efficiency and transparency current for this TA.

Fig. 3
Fig. 3

(a) Average blue power versus average IR power delivered to the KNbO3 crystal; the curves correspond to εIR-blue = 1.9%/W at the indicated duty cycles. (b) The same data as in (a), plotted as peak powers; the curve corresponds to εIR-blue = 1.9%/W. The blue power was measured immediately after the KNbO3 crystal.

Fig. 4
Fig. 4

(a) Average UV power versus average IR power delivered to the KNbO3 crystal; the lines correspond to εIR-UV = 4.5 × 10-9/W3 at the indicated duty cycles. (b) The same data as in (a), plotted as peak powers; the line corresponds to εIR-UV = 4.5 × 10-9/W3. The UV power has been corrected for Fresnel losses on the optics and for absorption by the NiSO4 · 6H2O filter.

Fig. 5
Fig. 5

(a) Absorption spectrum of NO recorded near 214.9 nm. The data are shown as relative rather than absolute cross sections because the pressure in the absorption cell (<1 Torr) was not measured accurately. (b) Calculated NO absorption spectrum, with line assignments (branch and J″ value) indicated above the spectrum. The stick spectrum was calculated by use of previously measured spectroscopic constants, taking into account the populations (at 25 °C) and Hönl–London factors for each rovibronic level.22 This stick spectrum was convolved with a 3-GHz (FWHM) Gaussian to account for Doppler broadening.

Fig. 6
Fig. 6

Absorption spectrum of SO2 (thin curve) recorded near 215.2 nm at a pressure of 20 Torr (0.97% SO2 in N2). The corresponding portion of the literature spectrum23 is also shown (thick curve). The dashed curve shows the present, Doppler-limited spectrum convolved with a 0.002-nm (13-GHz) FWHM Gaussian for comparison with the literature spectrum. The Doppler width at 25 °C (2.2 GHz) is indicated by the bar.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P n D = P n cw / D n - 1 ,
P IR = DS I / D - I tr ,
P blue D = ε IR - blue P IR 2 D / D ,
P UV D = ε IR - UV P IR 4 D / D 3 ,

Metrics