Abstract

The accuracy and the resolution of water-vapor measurements by use of the ground-based differential absorption lidar (DIAL) system of the Max-Planck-Institute (MPI) are determined. A theoretical analysis, intercomparisons with radiosondes, and measurements in high-altitude clouds allow the conclusion that, with the MPI DIAL system, water-vapor measurements with a systematic error of <5% in the whole troposphere can be performed. Special emphasis is laid on the outstanding daytime and nighttime performance of the DIAL system in the lower troposphere. With a time resolution of 1 min the statistical error varies between 0.05 g/m3 in the near range using 75 m and—depending on the meteorological conditions—approximately 0.25 g/m3 at 2 km using 150-m vertical resolution. When the eddy correlation method is applied, this accuracy and resolution are sufficient to determine water-vapor flux profiles in the convective boundary layer with a statistical error of <10% in each data point to approximately 1700 m. The results have contributed to the fact that the DIAL method has finally won recognition as an excellent tool for tropospheric research, in particular for boundary layer research and as a calibration standard for radiosondes and satellites.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
    [CrossRef]
  2. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
    [CrossRef]
  3. R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
    [CrossRef]
  4. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
    [CrossRef] [PubMed]
  5. W. B. Grant, “Differential absorption and Raman lidar for water vapor profile measurements: a review,” Opt. Eng. 30, 40–48 (1991).
    [CrossRef]
  6. V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
    [CrossRef] [PubMed]
  7. V. Wulfmeyer, J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
    [CrossRef] [PubMed]
  8. S. Lehmann, V. Wulfmeyer, J. Bösenberg, “Time-dependent attenuator for dynamic range reduction of lidar signals,” Appl. Opt. 36, 3469–3474 (1997).
    [CrossRef] [PubMed]
  9. D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
    [CrossRef] [PubMed]
  10. G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near infrared differential absorption lidar system,” Appl. Opt. 32, 4534–4551 (1993).
    [CrossRef] [PubMed]
  11. E. V. Browell, S. Ismail, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214.
  12. E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.
  13. C. Senff, “Messung des Wasserdampfflusses in der konvektiven Grenzschicht mit DIAL und RADAR-RASS,” Ph.D. dissertation (University of Hamburg, Hamburg, Germany, 1993).
  14. C. Senff, J. Bösenberg, G. Peters, “Measurement of water vapor flux profiles in the convective boundary layer with lidar and radar RASS,” J. Atmos. Oceanic Technol. 11, 85–93 (1994).
    [CrossRef]
  15. A. Giez, “Einsatz eines Wasserdampf-DIALs und eines Heterodyn-Wind-Lidars zur Messung des Vertikalflusses von Wasserdampf in einer konvektiven Grenzschicht,” Ph.D. dissertation (University of Munich, Munich, Germany, 1996).
  16. “Report of the first workshop of the World Climate Research Program/Global Energy and Water Cycle Experiment Water Vapour Project (GVaP),” 12–15 November 1996, World Climate Research Programme Informal Report No. 8 (World Meteorological Organization, Geneva, Switzerland, 1997).
  17. V. Wulfmeyer, F. Jansen, J. Bösenberg, “The transportable water-vapor DIAL of the MPI: performance analysis during the first field experiment,” Field Campaign LINEX96/1, in Arbeitsergebnisse der Abteilung Forschung No. 39 (German Weather Service, Offenbach am Main, Germany, 1996), pp. 13–24.
  18. V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.
  19. V. Wulfmeyer, F. Jansen, J. Bösenberg, L. Hirsch, G. Peters, “Investigation of turbulent processes in the lower troposphere with water-vapor DIAL and Radar-RASS,” J. Atmos. Sci. (to be published).
  20. A. Ansmann, “Errors in ground based water-vapor DIAL measurements due to Doppler-broadened Rayleigh backscattering,” Appl. Opt. 24, 3476–3480 (1985).
    [CrossRef] [PubMed]
  21. A. Ansmann, J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere,” Appl. Opt. 26, 3026–3032 (1987).
    [CrossRef] [PubMed]
  22. B. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
    [CrossRef]
  23. B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
    [CrossRef]
  24. C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
    [CrossRef]
  25. E. V. Browell, S. Ismail, B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991).
    [CrossRef] [PubMed]
  26. J. Harms, W. Lahmann, C. Weitkamp, “Geometrical compression of lidar return signals,” Appl. Opt. 17, 1131–1135 (1978).
    [CrossRef] [PubMed]
  27. J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979).
    [CrossRef] [PubMed]
  28. C. L. Korb, B. M. Gentry, S. X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997).
    [CrossRef] [PubMed]
  29. T. Schaberl, “Messung des Ozonflusses in der unteren Troposphäre mit einem neuen Ozon-DIAL-System und einem Radar-RASS,” Ph.D. dissertation (University of Hamburg, Hamburg, Germany, 1995).
  30. F. J. Schmidlin, “WMO international radiosonde intercomparison, phase II final report, 1985,” Instruments and Observing Methods Report No. 29, WMO/TD No. 312 (World Meteorological Organization, Geneva, Switzerland, 1989).
  31. J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the stratospheric aerosol and gas experiment II tropospheric water vapor to radiosonde measurements,” J. Geophys. Res. 98(D3), 4897–4917 (1993).
    [CrossRef]
  32. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. C. O’Starr, “A comparison of water vapour measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
    [CrossRef]
  33. J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).
  34. S. H. Melfi, D. N. Whiteman, R. Ferrare, “Atmospheric moisture structure revealed by Raman lidar,” Opt. Photon. News (16–18 October1991).
  35. E. E. Remsberg, L. L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978).
    [CrossRef] [PubMed]
  36. A. Ansmann, “Bodengebundene DIAL-Wasserdampfmessung: Berücksichtigung der Dopplerverbreiterung der Laserlinie durch Rayleighrückstreuung,” Ph.D. dissertation (University of Hamburg, Hamburg, Germany, 1989).
  37. E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 1. comparison with 1986 FIRE IFO measurements,” J. Geophys. Res. 99, 10,421–10,442 (1994).
    [CrossRef]
  38. E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 2. sensitivity studies,” J. Geophys. Res. 99, 10,443–10,454 (1994).
    [CrossRef]
  39. Y. Zhao, R. M. Hardesty, M. J. Post, “Multibeam transmitter for signal dynamic range reduction in incoherent lidar systems,” Appl. Opt. 31, 7623–7632 (1992).
    [CrossRef] [PubMed]
  40. J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
    [CrossRef]
  41. C. Senff, J. Bösenberg, G. Peters, T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and Radar-RASS: a case study,” Contrib. Atmos. Phys. 69, 161–176 (1996).
  42. V. Wulfmeyer, “Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison with large eddy simulation model results,” J. Atmos. Sci. (to be published).
  43. C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
    [CrossRef]
  44. V. V. Zuev, V. E. Zuev, Y. S. Makushin, V. N. Marichev, A. A. Mitsel, “Laser sounding of atmospheric humidity: experiment,” Appl. Opt. 22, 3742–3746 (1983).
    [CrossRef] [PubMed]
  45. J. Bösenberg, “A differential absorption lidar system for high resolution water vapor measurements in the troposphere,” Report No. 71 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1991).
  46. S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
    [CrossRef]
  47. J. A. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
    [CrossRef]
  48. J. Goldsmith, Sandia National Laboratories, Livermore, Calif. (personal communication, 1997).
  49. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
    [CrossRef]
  50. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
    [CrossRef] [PubMed]
  51. D. Renault, R. Capitini, “Boundary layer water vapor probing with a solar-blind Raman lidar: meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
    [CrossRef]
  52. W. E. Eichinger, D. I. Cooper, F. L. Archuletta, D. Hof, D. B. Holtkamp, R. R. Karl, C. R. Quick, J. Tiee, “Development of a scanning, solar-blind, water Raman lidar,” Appl. Opt. 33, 3923–3932 (1994).
    [CrossRef] [PubMed]
  53. S. E. Bisson, J. E. M. Goldsmith, “Measurements of daytime and upper tropospheric water vapor profiles by Raman lidar,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), 220–223.
  54. J. E. M. Goldsmith, S. E. Bisson, “Raman lidar profiling of atmospheric water vapor,” in Second Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing, IEEE Conference Proceedings (IEEE, Piscataway, N.J., 1995), 387–389.
  55. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. (to be published).
  56. R. Ferrare, Goddard Space Flight Center, Greenbelt, Md. (personal communication, 1997).
  57. St. Schmitz, “Entwicklung eines schmalbandigen und durchstimmbaren Alexandrit-Lasers für ein mobiles Na-Temperatur-Lidar,” Ph.D. dissertation (University of Bonn, Bonn, Germany, 1994).
  58. R. C. Sam, J. Yeh, K. R. Leslie, W. R. Radoport, “Design and performance of a 250 Hz alexandrite laser,” IEEE J. Quantum Electron. 24, 1151–1166 (1988).
    [CrossRef]
  59. S. Lehmann, J. Bösenberg, “All-solid-state diode-pumped water vapor DIAL and wind lidar for latent heat flux measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 74–76.
  60. J. Machol, R. M. Hardesty, B. Rye, C. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, St. A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 321–324.
  61. G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E30, p. 58.
  62. T. H. Chyba, P. Ponsardin, N. S. Higdon, R. J. DeYoung, E. V. Browell, “Alexandrite laser transmitter development for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 47–49.
  63. M. J. Kavaya, S. W. Henderson, E. C. Russell, R. M. Huffaker, R. G. Frehlich, “Monte Carlo computer simulations of ground-based and space-based coherent DIAL water vapor profiling,” Appl. Opt. 28, 840–850 (1989).
    [CrossRef] [PubMed]
  64. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plain Climate Study Site,” in Optical Remote Sensing of the Atmosphere, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 164–166.
  65. World Climate Research Program, “Scientific plan for the Global Energy and Water Cycle Experiment,” WMO/TD. No. 376 (World Meteorological Organization, Geneva, Switzerland, 1990).
  66. D. O’Starr, S. H. Melfi, Eds., “Implementation plan for the pilot phase of the Global Water Vapor Project,” International Global Energy and Water Cycle Experiment Project Office Publication Series No. 2 (International GEWEX Project Office, Columbia, Md., 1991).
  67. World Meteorological Organization, “Implementation plan for the GEWEX continental-scale international project (GCIP),” WMO/TD No. 461 (World Meteorological Organization, Geneva, Switzerland, 1992).
  68. “Baltic Sea Experiment (BALTEX) initial implementation plan,” International Baltex Secretariat Publication No. 2 (GKSS Research Center, Geesthacht, Germany, 1995).

1998 (2)

1997 (2)

1996 (2)

C. Senff, J. Bösenberg, G. Peters, T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and Radar-RASS: a case study,” Contrib. Atmos. Phys. 69, 161–176 (1996).

V. Wulfmeyer, J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
[CrossRef] [PubMed]

1995 (2)

V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
[CrossRef] [PubMed]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. C. O’Starr, “A comparison of water vapour measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

1994 (5)

E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 1. comparison with 1986 FIRE IFO measurements,” J. Geophys. Res. 99, 10,421–10,442 (1994).
[CrossRef]

E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 2. sensitivity studies,” J. Geophys. Res. 99, 10,443–10,454 (1994).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

W. E. Eichinger, D. I. Cooper, F. L. Archuletta, D. Hof, D. B. Holtkamp, R. R. Karl, C. R. Quick, J. Tiee, “Development of a scanning, solar-blind, water Raman lidar,” Appl. Opt. 33, 3923–3932 (1994).
[CrossRef] [PubMed]

C. Senff, J. Bösenberg, G. Peters, “Measurement of water vapor flux profiles in the convective boundary layer with lidar and radar RASS,” J. Atmos. Oceanic Technol. 11, 85–93 (1994).
[CrossRef]

1993 (2)

G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near infrared differential absorption lidar system,” Appl. Opt. 32, 4534–4551 (1993).
[CrossRef] [PubMed]

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the stratospheric aerosol and gas experiment II tropospheric water vapor to radiosonde measurements,” J. Geophys. Res. 98(D3), 4897–4917 (1993).
[CrossRef]

1992 (3)

1991 (4)

S. H. Melfi, D. N. Whiteman, R. Ferrare, “Atmospheric moisture structure revealed by Raman lidar,” Opt. Photon. News (16–18 October1991).

E. V. Browell, S. Ismail, B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991).
[CrossRef] [PubMed]

D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[CrossRef] [PubMed]

W. B. Grant, “Differential absorption and Raman lidar for water vapor profile measurements: a review,” Opt. Eng. 30, 40–48 (1991).
[CrossRef]

1989 (4)

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

B. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

M. J. Kavaya, S. W. Henderson, E. C. Russell, R. M. Huffaker, R. G. Frehlich, “Monte Carlo computer simulations of ground-based and space-based coherent DIAL water vapor profiling,” Appl. Opt. 28, 840–850 (1989).
[CrossRef] [PubMed]

1988 (2)

D. Renault, R. Capitini, “Boundary layer water vapor probing with a solar-blind Raman lidar: meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

R. C. Sam, J. Yeh, K. R. Leslie, W. R. Radoport, “Design and performance of a 250 Hz alexandrite laser,” IEEE J. Quantum Electron. 24, 1151–1166 (1988).
[CrossRef]

1987 (1)

1985 (1)

1983 (1)

1982 (1)

C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

1981 (1)

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

1979 (1)

1978 (2)

1974 (1)

R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

1970 (1)

J. A. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

1969 (1)

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Ansmann, A.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

A. Ansmann, J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere,” Appl. Opt. 26, 3026–3032 (1987).
[CrossRef] [PubMed]

A. Ansmann, “Errors in ground based water-vapor DIAL measurements due to Doppler-broadened Rayleigh backscattering,” Appl. Opt. 24, 3476–3480 (1985).
[CrossRef] [PubMed]

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

A. Ansmann, “Bodengebundene DIAL-Wasserdampfmessung: Berücksichtigung der Dopplerverbreiterung der Laserlinie durch Rayleighrückstreuung,” Ph.D. dissertation (University of Hamburg, Hamburg, Germany, 1989).

Archuletta, F. L.

Barrick, J. D. W.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Beernik, K. J.

G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E30, p. 58.

Bisson, S. E.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plain Climate Study Site,” in Optical Remote Sensing of the Atmosphere, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 164–166.

S. E. Bisson, J. E. M. Goldsmith, “Measurements of daytime and upper tropospheric water vapor profiles by Raman lidar,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), 220–223.

J. E. M. Goldsmith, S. E. Bisson, “Raman lidar profiling of atmospheric water vapor,” in Second Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing, IEEE Conference Proceedings (IEEE, Piscataway, N.J., 1995), 387–389.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. (to be published).

Blair, F. H.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plain Climate Study Site,” in Optical Remote Sensing of the Atmosphere, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 164–166.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. (to be published).

Bösenberg, J.

J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
[CrossRef]

S. Lehmann, V. Wulfmeyer, J. Bösenberg, “Time-dependent attenuator for dynamic range reduction of lidar signals,” Appl. Opt. 36, 3469–3474 (1997).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
[CrossRef] [PubMed]

C. Senff, J. Bösenberg, G. Peters, T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and Radar-RASS: a case study,” Contrib. Atmos. Phys. 69, 161–176 (1996).

V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
[CrossRef] [PubMed]

C. Senff, J. Bösenberg, G. Peters, “Measurement of water vapor flux profiles in the convective boundary layer with lidar and radar RASS,” J. Atmos. Oceanic Technol. 11, 85–93 (1994).
[CrossRef]

A. Ansmann, J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere,” Appl. Opt. 26, 3026–3032 (1987).
[CrossRef] [PubMed]

V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.

V. Wulfmeyer, F. Jansen, J. Bösenberg, L. Hirsch, G. Peters, “Investigation of turbulent processes in the lower troposphere with water-vapor DIAL and Radar-RASS,” J. Atmos. Sci. (to be published).

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

S. Lehmann, J. Bösenberg, “All-solid-state diode-pumped water vapor DIAL and wind lidar for latent heat flux measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 74–76.

J. Bösenberg, “A differential absorption lidar system for high resolution water vapor measurements in the troposphere,” Report No. 71 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1991).

Brackett, V. G.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Browell, E. V.

E. V. Browell, S. Ismail, B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991).
[CrossRef] [PubMed]

B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

B. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

E. V. Browell, S. Ismail, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

T. H. Chyba, P. Ponsardin, N. S. Higdon, R. J. DeYoung, E. V. Browell, “Alexandrite laser transmitter development for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 47–49.

Bruneau, D.

Cahen, C.

C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

Capitini, R.

D. Renault, R. Capitini, “Boundary layer water vapor probing with a solar-blind Raman lidar: meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

Cazeneuve, H.

Chiou, E. W.

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the stratospheric aerosol and gas experiment II tropospheric water vapor to radiosonde measurements,” J. Geophys. Res. 98(D3), 4897–4917 (1993).
[CrossRef]

Chu, W. P.

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the stratospheric aerosol and gas experiment II tropospheric water vapor to radiosonde measurements,” J. Geophys. Res. 98(D3), 4897–4917 (1993).
[CrossRef]

Chyba, T. H.

T. H. Chyba, P. Ponsardin, N. S. Higdon, R. J. DeYoung, E. V. Browell, “Alexandrite laser transmitter development for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 47–49.

Clayton, M. B.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Coleman, J. J.

G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E30, p. 58.

Cooney, J. A.

J. A. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

Cooper, D. I.

DeYoung, R. J.

T. H. Chyba, P. Ponsardin, N. S. Higdon, R. J. DeYoung, E. V. Browell, “Alexandrite laser transmitter development for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 47–49.

Dragic, P. D.

G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E30, p. 58.

Ehret, G.

Eichinger, W. E.

Elouragini, S.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Evans, K. D.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. C. O’Starr, “A comparison of water vapour measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

Ferrare, R.

S. H. Melfi, D. N. Whiteman, R. Ferrare, “Atmospheric moisture structure revealed by Raman lidar,” Opt. Photon. News (16–18 October1991).

R. Ferrare, Goddard Space Flight Center, Greenbelt, Md. (personal communication, 1997).

Ferrare, R. A.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. C. O’Starr, “A comparison of water vapour measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

Flamant, P.

C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

Flamant, P. H.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Frehlich, R. G.

Gentry, B. M.

Giez, A.

A. Giez, “Einsatz eines Wasserdampf-DIALs und eines Heterodyn-Wind-Lidars zur Messung des Vertikalflusses von Wasserdampf in einer konvektiven Grenzschicht,” Ph.D. dissertation (University of Munich, Munich, Germany, 1996).

Göktas, F.

V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.

Goldsmith, J.

J. Goldsmith, Sandia National Laboratories, Livermore, Calif. (personal communication, 1997).

Goldsmith, J. E. M.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

S. E. Bisson, J. E. M. Goldsmith, “Measurements of daytime and upper tropospheric water vapor profiles by Raman lidar,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), 220–223.

J. E. M. Goldsmith, S. E. Bisson, “Raman lidar profiling of atmospheric water vapor,” in Second Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing, IEEE Conference Proceedings (IEEE, Piscataway, N.J., 1995), 387–389.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. (to be published).

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plain Climate Study Site,” in Optical Remote Sensing of the Atmosphere, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 164–166.

Gordley, L. L.

Grant, W. B.

W. B. Grant, “Differential absorption and Raman lidar for water vapor profile measurements: a review,” Opt. Eng. 30, 40–48 (1991).
[CrossRef]

Grossmann, B.

B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

B. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

Grossmann, B. E.

Grund, C.

J. Machol, R. M. Hardesty, B. Rye, C. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, St. A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 321–324.

Hall, W. M.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Hardesty, R. M.

Y. Zhao, R. M. Hardesty, M. J. Post, “Multibeam transmitter for signal dynamic range reduction in incoherent lidar systems,” Appl. Opt. 31, 7623–7632 (1992).
[CrossRef] [PubMed]

J. Machol, R. M. Hardesty, B. Rye, C. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, St. A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 321–324.

Harms, J.

Henderson, S. W.

Heymsfield, A. J.

E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 2. sensitivity studies,” J. Geophys. Res. 99, 10,443–10,454 (1994).
[CrossRef]

E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 1. comparison with 1986 FIRE IFO measurements,” J. Geophys. Res. 99, 10,421–10,442 (1994).
[CrossRef]

Higdon, N. S.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

T. H. Chyba, P. Ponsardin, N. S. Higdon, R. J. DeYoung, E. V. Browell, “Alexandrite laser transmitter development for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 47–49.

Hirsch, L.

V. Wulfmeyer, F. Jansen, J. Bösenberg, L. Hirsch, G. Peters, “Investigation of turbulent processes in the lower troposphere with water-vapor DIAL and Radar-RASS,” J. Atmos. Sci. (to be published).

V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.

Hof, D.

Holtkamp, D. B.

Huffaker, R. M.

Ismail, S.

E. V. Browell, S. Ismail, B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991).
[CrossRef] [PubMed]

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

E. V. Browell, S. Ismail, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214.

Jansen, F.

V. Wulfmeyer, F. Jansen, J. Bösenberg, L. Hirsch, G. Peters, “Investigation of turbulent processes in the lower troposphere with water-vapor DIAL and Radar-RASS,” J. Atmos. Sci. (to be published).

V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.

Jensen, E. J.

E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 2. sensitivity studies,” J. Geophys. Res. 99, 10,443–10,454 (1994).
[CrossRef]

E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 1. comparison with 1986 FIRE IFO measurements,” J. Geophys. Res. 99, 10,421–10,442 (1994).
[CrossRef]

Karl, R. R.

Kavaya, M. J.

Kiemle, C.

Kinne, S.

E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 1. comparison with 1986 FIRE IFO measurements,” J. Geophys. Res. 99, 10,421–10,442 (1994).
[CrossRef]

E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 2. sensitivity studies,” J. Geophys. Res. 99, 10,443–10,454 (1994).
[CrossRef]

Klappheck, K. H.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Kooi, S. A.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Korb, C. L.

Lahmann, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

J. Harms, W. Lahmann, C. Weitkamp, “Geometrical compression of lidar return signals,” Appl. Opt. 17, 1131–1135 (1978).
[CrossRef] [PubMed]

Larsen, J. C.

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the stratospheric aerosol and gas experiment II tropospheric water vapor to radiosonde measurements,” J. Geophys. Res. 98(D3), 4897–4917 (1993).
[CrossRef]

Lawrence, J. D.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Lehmann, S.

S. Lehmann, V. Wulfmeyer, J. Bösenberg, “Time-dependent attenuator for dynamic range reduction of lidar signals,” Appl. Opt. 36, 3469–3474 (1997).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
[CrossRef] [PubMed]

S. Lehmann, J. Bösenberg, “All-solid-state diode-pumped water vapor DIAL and wind lidar for latent heat flux measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 74–76.

Leslie, K. R.

R. C. Sam, J. Yeh, K. R. Leslie, W. R. Radoport, “Design and performance of a 250 Hz alexandrite laser,” IEEE J. Quantum Electron. 24, 1151–1166 (1988).
[CrossRef]

Li, S. X.

Linné, H.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Little, L. M.

G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E30, p. 58.

Loth, C.

D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[CrossRef] [PubMed]

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Machol, J.

J. Machol, R. M. Hardesty, B. Rye, C. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, St. A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 321–324.

Makushin, Y. S.

Marichev, V. N.

McCormick, M. P.

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the stratospheric aerosol and gas experiment II tropospheric water vapor to radiosonde measurements,” J. Geophys. Res. 98(D3), 4897–4917 (1993).
[CrossRef]

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

McMaster, L. R.

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the stratospheric aerosol and gas experiment II tropospheric water vapor to radiosonde measurements,” J. Geophys. Res. 98(D3), 4897–4917 (1993).
[CrossRef]

Mégie, G.

C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

Melfi, S. H.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. C. O’Starr, “A comparison of water vapour measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

S. H. Melfi, D. N. Whiteman, R. Ferrare, “Atmospheric moisture structure revealed by Raman lidar,” Opt. Photon. News (16–18 October1991).

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Menenger, L.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Michaelis, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Mitsel, A. A.

Moerl, P.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Moore, A. S.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

O’Starr, D. C.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. C. O’Starr, “A comparison of water vapour measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

Oltmans, S.

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the stratospheric aerosol and gas experiment II tropospheric water vapor to radiosonde measurements,” J. Geophys. Res. 98(D3), 4897–4917 (1993).
[CrossRef]

Papen, G. C.

G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E30, p. 58.

Pelon, J.

D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[CrossRef] [PubMed]

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Peters, G.

C. Senff, J. Bösenberg, G. Peters, T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and Radar-RASS: a case study,” Contrib. Atmos. Phys. 69, 161–176 (1996).

C. Senff, J. Bösenberg, G. Peters, “Measurement of water vapor flux profiles in the convective boundary layer with lidar and radar RASS,” J. Atmos. Oceanic Technol. 11, 85–93 (1994).
[CrossRef]

V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.

V. Wulfmeyer, F. Jansen, J. Bösenberg, L. Hirsch, G. Peters, “Investigation of turbulent processes in the lower troposphere with water-vapor DIAL and Radar-RASS,” J. Atmos. Sci. (to be published).

Ponsardin, P.

T. H. Chyba, P. Ponsardin, N. S. Higdon, R. J. DeYoung, E. V. Browell, “Alexandrite laser transmitter development for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 47–49.

Post, M. J.

Quick, C. R.

Radoport, W. R.

R. C. Sam, J. Yeh, K. R. Leslie, W. R. Radoport, “Design and performance of a 250 Hz alexandrite laser,” IEEE J. Quantum Electron. 24, 1151–1166 (1988).
[CrossRef]

Remsberg, E. E.

Renault, D.

D. Renault, R. Capitini, “Boundary layer water vapor probing with a solar-blind Raman lidar: meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

Renger, W.

G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near infrared differential absorption lidar system,” Appl. Opt. 32, 4534–4551 (1993).
[CrossRef] [PubMed]

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Riebesell, M.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Rind, D.

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the stratospheric aerosol and gas experiment II tropospheric water vapor to radiosonde measurements,” J. Geophys. Res. 98(D3), 4897–4917 (1993).
[CrossRef]

Russell, E. C.

Rye, B.

J. Machol, R. M. Hardesty, B. Rye, C. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, St. A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 321–324.

Sam, R. C.

R. C. Sam, J. Yeh, K. R. Leslie, W. R. Radoport, “Design and performance of a 250 Hz alexandrite laser,” IEEE J. Quantum Electron. 24, 1151–1166 (1988).
[CrossRef]

Schaberl, T.

C. Senff, J. Bösenberg, G. Peters, T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and Radar-RASS: a case study,” Contrib. Atmos. Phys. 69, 161–176 (1996).

T. Schaberl, “Messung des Ozonflusses in der unteren Troposphäre mit einem neuen Ozon-DIAL-System und einem Radar-RASS,” Ph.D. dissertation (University of Hamburg, Hamburg, Germany, 1995).

Schmidlin, F. J.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. C. O’Starr, “A comparison of water vapour measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

F. J. Schmidlin, “WMO international radiosonde intercomparison, phase II final report, 1985,” Instruments and Observing Methods Report No. 29, WMO/TD No. 312 (World Meteorological Organization, Geneva, Switzerland, 1989).

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Schmitz, S.

Schmitz, St.

St. Schmitz, “Entwicklung eines schmalbandigen und durchstimmbaren Alexandrit-Lasers für ein mobiles Na-Temperatur-Lidar,” Ph.D. dissertation (University of Bonn, Bonn, Germany, 1994).

Schotland, R. M.

R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

Senff, C.

C. Senff, J. Bösenberg, G. Peters, T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and Radar-RASS: a case study,” Contrib. Atmos. Phys. 69, 161–176 (1996).

V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
[CrossRef] [PubMed]

C. Senff, J. Bösenberg, G. Peters, “Measurement of water vapor flux profiles in the convective boundary layer with lidar and radar RASS,” J. Atmos. Oceanic Technol. 11, 85–93 (1994).
[CrossRef]

C. Senff, “Messung des Wasserdampfflusses in der konvektiven Grenzschicht mit DIAL und RADAR-RASS,” Ph.D. dissertation (University of Hamburg, Hamburg, Germany, 1993).

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Simmet, G.

Thro, P.-Y.

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Tiee, J.

Toon, O. B.

E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 1. comparison with 1986 FIRE IFO measurements,” J. Geophys. Res. 99, 10,421–10,442 (1994).
[CrossRef]

E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 2. sensitivity studies,” J. Geophys. Res. 99, 10,443–10,454 (1994).
[CrossRef]

Turner, D. D.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. (to be published).

Voss, E.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Wandinger, U.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Weitkamp, C.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

J. Harms, W. Lahmann, C. Weitkamp, “Geometrical compression of lidar return signals,” Appl. Opt. 17, 1131–1135 (1978).
[CrossRef] [PubMed]

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

Westphal, D. L.

E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 2. sensitivity studies,” J. Geophys. Res. 99, 10,443–10,454 (1994).
[CrossRef]

E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 1. comparison with 1986 FIRE IFO measurements,” J. Geophys. Res. 99, 10,421–10,442 (1994).
[CrossRef]

Whiteman, D.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

Whiteman, D. N.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. C. O’Starr, “A comparison of water vapour measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

S. H. Melfi, D. N. Whiteman, R. Ferrare, “Atmospheric moisture structure revealed by Raman lidar,” Opt. Photon. News (16–18 October1991).

Wulfmeyer, V.

V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
[CrossRef]

S. Lehmann, V. Wulfmeyer, J. Bösenberg, “Time-dependent attenuator for dynamic range reduction of lidar signals,” Appl. Opt. 36, 3469–3474 (1997).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
[CrossRef] [PubMed]

V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
[CrossRef] [PubMed]

V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.

V. Wulfmeyer, F. Jansen, J. Bösenberg, L. Hirsch, G. Peters, “Investigation of turbulent processes in the lower troposphere with water-vapor DIAL and Radar-RASS,” J. Atmos. Sci. (to be published).

V. Wulfmeyer, “Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison with large eddy simulation model results,” J. Atmos. Sci. (to be published).

Yeh, J.

R. C. Sam, J. Yeh, K. R. Leslie, W. R. Radoport, “Design and performance of a 250 Hz alexandrite laser,” IEEE J. Quantum Electron. 24, 1151–1166 (1988).
[CrossRef]

Zhao, Y.

Zuev, V. E.

Zuev, V. V.

Appl. Opt. (18)

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

S. Lehmann, V. Wulfmeyer, J. Bösenberg, “Time-dependent attenuator for dynamic range reduction of lidar signals,” Appl. Opt. 36, 3469–3474 (1997).
[CrossRef] [PubMed]

D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
[CrossRef] [PubMed]

G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near infrared differential absorption lidar system,” Appl. Opt. 32, 4534–4551 (1993).
[CrossRef] [PubMed]

A. Ansmann, “Errors in ground based water-vapor DIAL measurements due to Doppler-broadened Rayleigh backscattering,” Appl. Opt. 24, 3476–3480 (1985).
[CrossRef] [PubMed]

A. Ansmann, J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere,” Appl. Opt. 26, 3026–3032 (1987).
[CrossRef] [PubMed]

E. V. Browell, S. Ismail, B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991).
[CrossRef] [PubMed]

J. Harms, W. Lahmann, C. Weitkamp, “Geometrical compression of lidar return signals,” Appl. Opt. 17, 1131–1135 (1978).
[CrossRef] [PubMed]

J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979).
[CrossRef] [PubMed]

C. L. Korb, B. M. Gentry, S. X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997).
[CrossRef] [PubMed]

J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
[CrossRef]

V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
[CrossRef]

E. E. Remsberg, L. L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978).
[CrossRef] [PubMed]

Y. Zhao, R. M. Hardesty, M. J. Post, “Multibeam transmitter for signal dynamic range reduction in incoherent lidar systems,” Appl. Opt. 31, 7623–7632 (1992).
[CrossRef] [PubMed]

V. V. Zuev, V. E. Zuev, Y. S. Makushin, V. N. Marichev, A. A. Mitsel, “Laser sounding of atmospheric humidity: experiment,” Appl. Opt. 22, 3742–3746 (1983).
[CrossRef] [PubMed]

W. E. Eichinger, D. I. Cooper, F. L. Archuletta, D. Hof, D. B. Holtkamp, R. R. Karl, C. R. Quick, J. Tiee, “Development of a scanning, solar-blind, water Raman lidar,” Appl. Opt. 33, 3923–3932 (1994).
[CrossRef] [PubMed]

M. J. Kavaya, S. W. Henderson, E. C. Russell, R. M. Huffaker, R. G. Frehlich, “Monte Carlo computer simulations of ground-based and space-based coherent DIAL water vapor profiling,” Appl. Opt. 28, 840–850 (1989).
[CrossRef] [PubMed]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

Contrib. Atmos. Phys. (1)

C. Senff, J. Bösenberg, G. Peters, T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and Radar-RASS: a case study,” Contrib. Atmos. Phys. 69, 161–176 (1996).

IEEE J. Quantum Electron. (1)

R. C. Sam, J. Yeh, K. R. Leslie, W. R. Radoport, “Design and performance of a 250 Hz alexandrite laser,” IEEE J. Quantum Electron. 24, 1151–1166 (1988).
[CrossRef]

J. Appl. Meteorol. (3)

J. A. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

J. Atmos. Oceanic Technol. (3)

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. C. O’Starr, “A comparison of water vapour measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995).
[CrossRef]

C. Senff, J. Bösenberg, G. Peters, “Measurement of water vapor flux profiles in the convective boundary layer with lidar and radar RASS,” J. Atmos. Oceanic Technol. 11, 85–93 (1994).
[CrossRef]

D. Renault, R. Capitini, “Boundary layer water vapor probing with a solar-blind Raman lidar: meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

J. Geophys. Res. (3)

E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 1. comparison with 1986 FIRE IFO measurements,” J. Geophys. Res. 99, 10,421–10,442 (1994).
[CrossRef]

E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 2. sensitivity studies,” J. Geophys. Res. 99, 10,443–10,454 (1994).
[CrossRef]

J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the stratospheric aerosol and gas experiment II tropospheric water vapor to radiosonde measurements,” J. Geophys. Res. 98(D3), 4897–4917 (1993).
[CrossRef]

J. Mol. Spectrosc. (2)

B. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

Opt. Eng. (1)

W. B. Grant, “Differential absorption and Raman lidar for water vapor profile measurements: a review,” Opt. Eng. 30, 40–48 (1991).
[CrossRef]

Opt. Lett. (2)

Opt. Photon. News (1)

S. H. Melfi, D. N. Whiteman, R. Ferrare, “Atmospheric moisture structure revealed by Raman lidar,” Opt. Photon. News (16–18 October1991).

Other (29)

A. Ansmann, “Bodengebundene DIAL-Wasserdampfmessung: Berücksichtigung der Dopplerverbreiterung der Laserlinie durch Rayleighrückstreuung,” Ph.D. dissertation (University of Hamburg, Hamburg, Germany, 1989).

V. Wulfmeyer, “Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison with large eddy simulation model results,” J. Atmos. Sci. (to be published).

J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).

T. Schaberl, “Messung des Ozonflusses in der unteren Troposphäre mit einem neuen Ozon-DIAL-System und einem Radar-RASS,” Ph.D. dissertation (University of Hamburg, Hamburg, Germany, 1995).

F. J. Schmidlin, “WMO international radiosonde intercomparison, phase II final report, 1985,” Instruments and Observing Methods Report No. 29, WMO/TD No. 312 (World Meteorological Organization, Geneva, Switzerland, 1989).

E. V. Browell, S. Ismail, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214.

E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.

C. Senff, “Messung des Wasserdampfflusses in der konvektiven Grenzschicht mit DIAL und RADAR-RASS,” Ph.D. dissertation (University of Hamburg, Hamburg, Germany, 1993).

A. Giez, “Einsatz eines Wasserdampf-DIALs und eines Heterodyn-Wind-Lidars zur Messung des Vertikalflusses von Wasserdampf in einer konvektiven Grenzschicht,” Ph.D. dissertation (University of Munich, Munich, Germany, 1996).

“Report of the first workshop of the World Climate Research Program/Global Energy and Water Cycle Experiment Water Vapour Project (GVaP),” 12–15 November 1996, World Climate Research Programme Informal Report No. 8 (World Meteorological Organization, Geneva, Switzerland, 1997).

V. Wulfmeyer, F. Jansen, J. Bösenberg, “The transportable water-vapor DIAL of the MPI: performance analysis during the first field experiment,” Field Campaign LINEX96/1, in Arbeitsergebnisse der Abteilung Forschung No. 39 (German Weather Service, Offenbach am Main, Germany, 1996), pp. 13–24.

V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.

V. Wulfmeyer, F. Jansen, J. Bösenberg, L. Hirsch, G. Peters, “Investigation of turbulent processes in the lower troposphere with water-vapor DIAL and Radar-RASS,” J. Atmos. Sci. (to be published).

J. Bösenberg, “A differential absorption lidar system for high resolution water vapor measurements in the troposphere,” Report No. 71 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1991).

J. Goldsmith, Sandia National Laboratories, Livermore, Calif. (personal communication, 1997).

S. Lehmann, J. Bösenberg, “All-solid-state diode-pumped water vapor DIAL and wind lidar for latent heat flux measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 74–76.

J. Machol, R. M. Hardesty, B. Rye, C. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, St. A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 321–324.

G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E30, p. 58.

T. H. Chyba, P. Ponsardin, N. S. Higdon, R. J. DeYoung, E. V. Browell, “Alexandrite laser transmitter development for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 47–49.

S. E. Bisson, J. E. M. Goldsmith, “Measurements of daytime and upper tropospheric water vapor profiles by Raman lidar,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), 220–223.

J. E. M. Goldsmith, S. E. Bisson, “Raman lidar profiling of atmospheric water vapor,” in Second Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing, IEEE Conference Proceedings (IEEE, Piscataway, N.J., 1995), 387–389.

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. (to be published).

R. Ferrare, Goddard Space Flight Center, Greenbelt, Md. (personal communication, 1997).

St. Schmitz, “Entwicklung eines schmalbandigen und durchstimmbaren Alexandrit-Lasers für ein mobiles Na-Temperatur-Lidar,” Ph.D. dissertation (University of Bonn, Bonn, Germany, 1994).

J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plain Climate Study Site,” in Optical Remote Sensing of the Atmosphere, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 164–166.

World Climate Research Program, “Scientific plan for the Global Energy and Water Cycle Experiment,” WMO/TD. No. 376 (World Meteorological Organization, Geneva, Switzerland, 1990).

D. O’Starr, S. H. Melfi, Eds., “Implementation plan for the pilot phase of the Global Water Vapor Project,” International Global Energy and Water Cycle Experiment Project Office Publication Series No. 2 (International GEWEX Project Office, Columbia, Md., 1991).

World Meteorological Organization, “Implementation plan for the GEWEX continental-scale international project (GCIP),” WMO/TD No. 461 (World Meteorological Organization, Geneva, Switzerland, 1992).

“Baltic Sea Experiment (BALTEX) initial implementation plan,” International Baltex Secretariat Publication No. 2 (GKSS Research Center, Geesthacht, Germany, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Setup of the DIAL system: FI1, FI2, Faraday isolators; HP, half-wave plate; POL, polarizer; P1–P4, pulse generators; BE, beam expander, PD1, PD2, photodetectors; SME, single-mode electronic device, UD, ultrafast discriminator; TCO, trigger coherent oscillator; DS, detector system; L1, L2, lenses; IF, interference filter; VA, variable attenuator; APD, avalanche photodiode; PA, preamplifier; DAS, data acquisition system; TR, transient digitizer.

Fig. 2
Fig. 2

Overlap function O, ln(O on/O off) (upper panel) and the relative error δα G G (lower panel) caused by different laser beam propagation directions αon and αoff calculated by use of Eq. (2) with Δτ G = 0.1. The relative errors were determined for two different height resolutions and the following system parameters: focal length of telescope f t = 2800 mm; radius of primary mirror R t = 140 mm; radius of obstruction of secondary mirror R s = 50 mm; distance between primary and secondary mirrors, 450 mm; FOV, θ = 0.75 mrad; distance between the optical axes of the telescope and of the laser beam R l,0 = 180 mm at r = 0. αon and αoff differ by only 10 μrad.

Fig. 3
Fig. 3

Relative error caused by a narrow-band interference filter in the detector system calculated by use of Eqs. (4) and (5) and the same data as for Fig. 2. Additionally it was set as λ0 = 729.18 nm, Δν on,off = 50 GHz, f l = 175 mm, and R l (r) = α0 r + R l,0 with α0 = 0.

Fig. 4
Fig. 4

Water-vapor and temperature profiles measured during the intercomparison experiment on 1 December 1994 at 19:13 UT. The DIAL profile was calculated without Doppler correction. Indicated in the DIAL profile are the statistical errors that are often less than the diameter of the circles. Excellent agreement between the water-vapor profiles in the 5-LSB region was achieved. Note the extended dry layer between 800 and 1400 m.

Fig. 5
Fig. 5

Error analysis of the intercomparison on 1 December 1994 at 19:13 UT. The absolute and relative statistical errors of the DIAL profile σWV and σWVWV are shown. These were calculated with a resolution of 10 min and 60–480 m. Up to 3200 m the statistical error is less than 0.043 g/m3.

Fig. 6
Fig. 6

Intercomparison experiment performed on 29 April 1996 at 20:55 UT. The Doppler correction was applied in the DIAL profile that has an effect only of approximately 10% at 2400 m. In the DIAL profile the statistical errors are also indicated.

Fig. 7
Fig. 7

Error analysis of the intercomparison on 29 April 1996 at 20:55 UT. The absolute and relative statistical errors of the DIAL profile σWV and σWVWV are shown. These were calculated with a resolution of 10 min and 75–300 m. Up to 2200 m the statistical error is less than 0.06 g/m3.

Fig. 8
Fig. 8

Second intercomparison experiment performed on 29 April 1996. The DIAL profile is a composite of the near-range measurement at 22:23 UT and the far-range measurement at 23:28 UT. No Doppler correction was applied. The statistical errors in the DIAL profile are shown, but these are always lower than the diameter of the circles.

Fig. 9
Fig. 9

Error analysis of the intercomparison on 29 April 1996 at 22:23 and 23:28 UT. The absolute and relative statistical errors of the DIAL profile σWV and σWVWV are shown. These were calculated with a resolution of 10 min and 75–300 m in the near range and a resolution of 30 min and 300–900 m in the far range. Up to 2200 m the statistical error is less than 0.05 g/m3.

Fig. 10
Fig. 10

Backscatter signals and optical thickness τWV of an altocumulus cloud measured on 11 September 1994 at 22:00 UT. The backscatter signals were averaged over 150 m and 20 min. The locations of the grid points for signal averaging and the range cell for the application of the DIAL equation are indicated. The slope of τWV in the range cell is proportional to the absolute humidity. A nonlinear decrease of τWV is observed in the range where the on-line backscatter signal is <5 LSB.

Fig. 11
Fig. 11

Backscatter signals and optical thickness τWV of a cirrus cloud measured on 1 December 1994 at 20:00 UT. The backscatter signals were averaged over 50 min and 750 m. The locations of the grid points for signal averaging and the range cell for the application of the DIAL equation are indicated. Again, the nonlinear decrease of τWV in the range of a low on-line signal is observed. The slope of τWV in the range cell is proportional to the absolute humidity.

Fig. 12
Fig. 12

Temperature profile measured in the upper troposphere on 1 December 1994. The locally launched Hamburg radiosonde was started at 19:13 UT. From this radiosonde data could be received to a resolution of 7000 m. These data were extrapolated to a height of 11 km. A comparison with data from a radiosonde started at 18:30 UT in Bergen, Germany, showed agreement to within 0.3 K with the extrapolation in the cirrus cloud region.

Fig. 13
Fig. 13

Daytime water-vapor profile measured on 30 January 1995 at 14:40 UT (upper panel). A resolution of 10 min and 300–900 m was applied. In the lower panel the corresponding absolute and relative statistical errors of the DIAL profile are shown. At 5000 m the statistical error is less than 0.02 g/m3.

Tables (2)

Tables Icon

Table 1 Specifications of the MPI Water–Vapor DIAL Systema

Tables Icon

Table 2 Comparison of State-of-the-Art DIAL and Raman Lidar Systems for Water-Vapor Measurementsa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δ α G α G = 1 2 Δ τ G ln T d , on r 1 T d , off r 2 T d , on r 2 T d , off r 1 .
δ α G α G = 1 2 Δ τ G ln O on r 1 O off r 2 O on r 2 O off r 1 .
δ α G α G = 1 2 Δ τ G ln T f , on r 1 T f , off r 2 T f , on r 2 T f , off r 1 .
δ α G α G = 4   ln   2 Δ τ G Δ ν on , off ν 0 Δ ν f 2 1 1 - sin 2 θ r 1 n 2 1 / 2 - 1 1 - sin 2 θ r 2 n 2 1 / 2 ,
θ r = θ 0 + f t f l R l r - R t r ,
σ WV 1 2 σ H 2 O Δ r P off   K τ WV ,   Δ τ WV .
σ WV , T 2 = σ WV , T 1 T 1 T 2 ,
σ WV , H 2 = σ WV , H 1 H 1 H 2 1.5 ,

Metrics