Abstract

The overall image quality and diagnostic potential of time-resolved transmittance imaging depend on sensitivity to optical contrast, capacity to discriminate scattering from absorption contributions, and spatial resolution. We have investigated experimentally the effects of the optical properties of the background medium on the overall image quality of optical imaging based on fitting the experimental data to the solution of the diffusion equation and on time gating. Images were acquired from phantoms with different background optical properties, while the optical contrast between inhomogeneities and background is kept constant. Data were collected every 0.2 cm over a 6 cm × 6 cm area from realistic tissue phantoms containing cylindrical inhomogeneities (1 cm high and 1 cm in diameter) embedded in a 5-cm-thick turbid slab. The optical coefficients of the background were varied in the ranges of 5–15 cm-1 for transport scattering and 0.02–0.08 cm-1 for absorption. The optical contrast for the inclusions was kept at values of -50% and +50% for the scattering and -75% and +300% for the absorption. The results show that both high scattering and high absorption are beneficial.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yodh, B. Tromberg, E. Sevick-Muraca, D. Pine, eds., Diffusing Photons in Turbid Media, Appl. Opt. 36, 9–231 (1997).
  2. A. Yodh, B. Tromberg, E. Sevick-Muraca, D. Pine, eds., Diffusing Photons in Turbid Media, J. Opt. Soc. Am. A 14, 136–342 (1997).
  3. H. Moseley, ed., Optical Radiation Technique in Medicine and Biology, Phys. Med. Biol. 24, 759–996 (1997).
  4. S. Ertefai, A. E. Profio, “Spectral transmittance and contrast in breast diaphanography,” Med. Phys. 12, 393–400 (1985).
    [CrossRef] [PubMed]
  5. A. E. Profio, G. Navarro, O. W. Sartorious, “Scientific basis of breast diaphanography,” Med. Phys. 16, 60–65 (1989).
    [CrossRef] [PubMed]
  6. B. Monsees, J. M. Destouet, D. Gersell, “Light scan evaluation of nonpalpable breast lesions,” Radiology 163, 467–470 (1987).
    [PubMed]
  7. S. Andersson-Engels, R. Berg, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
    [CrossRef] [PubMed]
  8. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical tomography,” Opt. Lett. 18, 1092–1094 (1993).
    [CrossRef] [PubMed]
  9. D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biological media,” Science 259, 1463–1466 (1993).
    [CrossRef] [PubMed]
  10. J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995).
    [CrossRef]
  11. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
    [CrossRef] [PubMed]
  12. A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
    [CrossRef] [PubMed]
  13. G. Mitic, J. Kölzer, J. Otto, E. Piles, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
    [CrossRef] [PubMed]
  14. J. C. Hebden, A. H. Gandjbakhche, “Experimental validation of an elementary formula for estimating spatial resolution for optical transillumination imaging,” Med. Phys. 22, 1271–1272 (1995).
    [CrossRef] [PubMed]
  15. V. Chernomordik, R. Nossal, A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling arguments,” Med. Phys. 23, 1857–1861 (1996).
    [CrossRef] [PubMed]
  16. K. M. Yoo, F. Liu, R. R. Alfano, “Imaging through a scattering wall using absorption,” Opt. Lett. 16, 1068–1070 (1991).
    [CrossRef] [PubMed]
  17. D. Contini, H. Liszka, A. Sassaroli, G. Zaccanti, “Imaging of highly turbid media by the absorption method,” Appl. Opt. 35, 2315–2324 (1996).
    [CrossRef] [PubMed]
  18. M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissues: I. Models of radiation transport and their applications,” Lasers Med. Sci. 6, 155–168 (1992).
    [CrossRef]
  19. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
    [CrossRef] [PubMed]
  20. A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 35, 1767–1773 (1996).
    [CrossRef] [PubMed]
  21. R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
    [CrossRef]
  22. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69, 4162–4164 (1996).
    [CrossRef]
  23. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  24. J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
    [CrossRef] [PubMed]
  25. S. R. Arridge, “Photon-measurement density functions. Part I: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
    [CrossRef] [PubMed]
  26. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Spatial resolution of imaging with diffusing light: edge spread function measurements on a realistic tissue phantom,” Med. Phys. in press (1998).
  27. S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissuelike media,” J. Photochem. Photobiol. B 16, 155–167 (1992).
    [CrossRef] [PubMed]
  28. H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time-resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
    [CrossRef] [PubMed]
  29. C. af Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, S. Svanberg, “Diffusively scattered femtosecond white light examination of breast tissue in vitro and in vivo,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller eds., Proc. SPIE2626, 149–157 (1995).
  30. K. Suzuki, Y. Yamashita, K. Ohta, M. Kancko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
    [CrossRef] [PubMed]
  31. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “In vivo absorption and scattering spectra of human tissues in the red and near infrared,” in Vol. 21 of 1998 OSA Technical Digest, Advances in Optical Imaging and Photon Migration (Optical Society of America, Washington, D.C., 1998).
  32. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
    [CrossRef] [PubMed]

1998 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Spatial resolution of imaging with diffusing light: edge spread function measurements on a realistic tissue phantom,” Med. Phys. in press (1998).

1997 (5)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

A. Yodh, B. Tromberg, E. Sevick-Muraca, D. Pine, eds., Diffusing Photons in Turbid Media, Appl. Opt. 36, 9–231 (1997).

A. Yodh, B. Tromberg, E. Sevick-Muraca, D. Pine, eds., Diffusing Photons in Turbid Media, J. Opt. Soc. Am. A 14, 136–342 (1997).

H. Moseley, ed., Optical Radiation Technique in Medicine and Biology, Phys. Med. Biol. 24, 759–996 (1997).

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

1996 (7)

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 35, 1767–1773 (1996).
[CrossRef] [PubMed]

D. Contini, H. Liszka, A. Sassaroli, G. Zaccanti, “Imaging of highly turbid media by the absorption method,” Appl. Opt. 35, 2315–2324 (1996).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
[CrossRef] [PubMed]

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time-resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kancko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69, 4162–4164 (1996).
[CrossRef]

V. Chernomordik, R. Nossal, A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling arguments,” Med. Phys. 23, 1857–1861 (1996).
[CrossRef] [PubMed]

1995 (3)

J. C. Hebden, A. H. Gandjbakhche, “Experimental validation of an elementary formula for estimating spatial resolution for optical transillumination imaging,” Med. Phys. 22, 1271–1272 (1995).
[CrossRef] [PubMed]

J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995).
[CrossRef]

S. R. Arridge, “Photon-measurement density functions. Part I: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

1994 (3)

G. Mitic, J. Kölzer, J. Otto, E. Piles, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
[CrossRef] [PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

1993 (2)

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biological media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical tomography,” Opt. Lett. 18, 1092–1094 (1993).
[CrossRef] [PubMed]

1992 (3)

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[CrossRef] [PubMed]

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissues: I. Models of radiation transport and their applications,” Lasers Med. Sci. 6, 155–168 (1992).
[CrossRef]

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissuelike media,” J. Photochem. Photobiol. B 16, 155–167 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

1989 (2)

1987 (1)

B. Monsees, J. M. Destouet, D. Gersell, “Light scan evaluation of nonpalpable breast lesions,” Radiology 163, 467–470 (1987).
[PubMed]

1985 (1)

S. Ertefai, A. E. Profio, “Spectral transmittance and contrast in breast diaphanography,” Med. Phys. 12, 393–400 (1985).
[CrossRef] [PubMed]

af Klinteberg, C.

C. af Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, S. Svanberg, “Diffusively scattered femtosecond white light examination of breast tissue in vitro and in vivo,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller eds., Proc. SPIE2626, 149–157 (1995).

Alfano, R. R.

Anderson, E. R.

Andersson-Engels, S.

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissuelike media,” J. Photochem. Photobiol. B 16, 155–167 (1992).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

C. af Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, S. Svanberg, “Diffusively scattered femtosecond white light examination of breast tissue in vitro and in vivo,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller eds., Proc. SPIE2626, 149–157 (1995).

Arridge, S. R.

Benaron, D. A.

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biological media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Berg, R.

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissuelike media,” J. Photochem. Photobiol. B 16, 155–167 (1992).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

C. af Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, S. Svanberg, “Diffusively scattered femtosecond white light examination of breast tissue in vitro and in vivo,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller eds., Proc. SPIE2626, 149–157 (1995).

Bonner, R. F.

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 35, 1767–1773 (1996).
[CrossRef] [PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

Brenner, M.

Chance, B.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kancko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Chernomordik, V.

V. Chernomordik, R. Nossal, A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling arguments,” Med. Phys. 23, 1857–1861 (1996).
[CrossRef] [PubMed]

Contini, D.

Coquoz, O.

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Spatial resolution of imaging with diffusing light: edge spread function measurements on a realistic tissue phantom,” Med. Phys. in press (1998).

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69, 4162–4164 (1996).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “In vivo absorption and scattering spectra of human tissues in the red and near infrared,” in Vol. 21 of 1998 OSA Technical Digest, Advances in Optical Imaging and Photon Migration (Optical Society of America, Washington, D.C., 1998).

Das, B. B.

Destouet, J. M.

B. Monsees, J. M. Destouet, D. Gersell, “Light scan evaluation of nonpalpable breast lesions,” Radiology 163, 467–470 (1987).
[PubMed]

Ertefai, S.

S. Ertefai, A. E. Profio, “Spectral transmittance and contrast in breast diaphanography,” Med. Phys. 12, 393–400 (1985).
[CrossRef] [PubMed]

Fishkin, J. B.

Gandjbakhche, A. H.

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 35, 1767–1773 (1996).
[CrossRef] [PubMed]

V. Chernomordik, R. Nossal, A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling arguments,” Med. Phys. 23, 1857–1861 (1996).
[CrossRef] [PubMed]

J. C. Hebden, A. H. Gandjbakhche, “Experimental validation of an elementary formula for estimating spatial resolution for optical transillumination imaging,” Med. Phys. 22, 1271–1272 (1995).
[CrossRef] [PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

Gersell, D.

B. Monsees, J. M. Destouet, D. Gersell, “Light scan evaluation of nonpalpable breast lesions,” Radiology 163, 467–470 (1987).
[PubMed]

Hebden, J. C.

J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995).
[CrossRef]

J. C. Hebden, A. H. Gandjbakhche, “Experimental validation of an elementary formula for estimating spatial resolution for optical transillumination imaging,” Med. Phys. 22, 1271–1272 (1995).
[CrossRef] [PubMed]

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[CrossRef] [PubMed]

Heusmann, H.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time-resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

Kancko, M.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kancko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Kölzer, J.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time-resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

G. Mitic, J. Kölzer, J. Otto, E. Piles, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
[CrossRef] [PubMed]

Lindquist, C.

C. af Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, S. Svanberg, “Diffusively scattered femtosecond white light examination of breast tissue in vitro and in vivo,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller eds., Proc. SPIE2626, 149–157 (1995).

Liszka, H.

Liu, F.

Mitic, G.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time-resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

G. Mitic, J. Kölzer, J. Otto, E. Piles, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
[CrossRef] [PubMed]

Monsees, B.

B. Monsees, J. M. Destouet, D. Gersell, “Light scan evaluation of nonpalpable breast lesions,” Radiology 163, 467–470 (1987).
[PubMed]

Musolino, M.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Navarro, G.

A. E. Profio, G. Navarro, O. W. Sartorious, “Scientific basis of breast diaphanography,” Med. Phys. 16, 60–65 (1989).
[CrossRef] [PubMed]

Nossal, R.

V. Chernomordik, R. Nossal, A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling arguments,” Med. Phys. 23, 1857–1861 (1996).
[CrossRef] [PubMed]

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 35, 1767–1773 (1996).
[CrossRef] [PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

Ohta, K.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kancko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Otto, J.

Patterson, M. S.

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissues: I. Models of radiation transport and their applications,” Lasers Med. Sci. 6, 155–168 (1992).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Spatial resolution of imaging with diffusing light: edge spread function measurements on a realistic tissue phantom,” Med. Phys. in press (1998).

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69, 4162–4164 (1996).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “In vivo absorption and scattering spectra of human tissues in the red and near infrared,” in Vol. 21 of 1998 OSA Technical Digest, Advances in Optical Imaging and Photon Migration (Optical Society of America, Washington, D.C., 1998).

Piles, E.

Profio, A. E.

A. E. Profio, G. Navarro, O. W. Sartorious, “Scientific basis of breast diaphanography,” Med. Phys. 16, 60–65 (1989).
[CrossRef] [PubMed]

S. Ertefai, A. E. Profio, “Spectral transmittance and contrast in breast diaphanography,” Med. Phys. 12, 393–400 (1985).
[CrossRef] [PubMed]

Sartorious, O. W.

A. E. Profio, G. Navarro, O. W. Sartorious, “Scientific basis of breast diaphanography,” Med. Phys. 16, 60–65 (1989).
[CrossRef] [PubMed]

Sassaroli, A.

Sölkner, G.

Stevenson, D. K.

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biological media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Suzuki, K.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kancko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Svanberg, S.

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissuelike media,” J. Photochem. Photobiol. B 16, 155–167 (1992).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

C. af Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, S. Svanberg, “Diffusively scattered femtosecond white light examination of breast tissue in vitro and in vivo,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller eds., Proc. SPIE2626, 149–157 (1995).

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Spatial resolution of imaging with diffusing light: edge spread function measurements on a realistic tissue phantom,” Med. Phys. in press (1998).

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69, 4162–4164 (1996).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “In vivo absorption and scattering spectra of human tissues in the red and near infrared,” in Vol. 21 of 1998 OSA Technical Digest, Advances in Optical Imaging and Photon Migration (Optical Society of America, Washington, D.C., 1998).

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Spatial resolution of imaging with diffusing light: edge spread function measurements on a realistic tissue phantom,” Med. Phys. in press (1998).

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69, 4162–4164 (1996).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “In vivo absorption and scattering spectra of human tissues in the red and near infrared,” in Vol. 21 of 1998 OSA Technical Digest, Advances in Optical Imaging and Photon Migration (Optical Society of America, Washington, D.C., 1998).

Tromberg, B. J.

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Spatial resolution of imaging with diffusing light: edge spread function measurements on a realistic tissue phantom,” Med. Phys. in press (1998).

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69, 4162–4164 (1996).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “In vivo absorption and scattering spectra of human tissues in the red and near infrared,” in Vol. 21 of 1998 OSA Technical Digest, Advances in Optical Imaging and Photon Migration (Optical Society of America, Washington, D.C., 1998).

Weiss, G. H.

Wilson, B. C.

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissues: I. Models of radiation transport and their applications,” Lasers Med. Sci. 6, 155–168 (1992).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Wyman, D. R.

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissues: I. Models of radiation transport and their applications,” Lasers Med. Sci. 6, 155–168 (1992).
[CrossRef]

Yamashita, Y.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kancko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Yoo, K. M.

Yoshida, M.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kancko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Zaccanti, G.

Zinth, W.

Appl. Opt. (7)

Appl. Phys. Lett. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69, 4162–4164 (1996).
[CrossRef]

Diffusing Photons in Turbid Media (2)

A. Yodh, B. Tromberg, E. Sevick-Muraca, D. Pine, eds., Diffusing Photons in Turbid Media, Appl. Opt. 36, 9–231 (1997).

A. Yodh, B. Tromberg, E. Sevick-Muraca, D. Pine, eds., Diffusing Photons in Turbid Media, J. Opt. Soc. Am. A 14, 136–342 (1997).

IEEE J. Quantum Electron. (1)

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

J. Biomed. Opt. (2)

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time-resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kancko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breast using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B (1)

S. Andersson-Engels, R. Berg, S. Svanberg, “Effects of optical constants on time-gated transillumination of tissue and tissuelike media,” J. Photochem. Photobiol. B 16, 155–167 (1992).
[CrossRef] [PubMed]

Lasers Med. Sci. (1)

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissues: I. Models of radiation transport and their applications,” Lasers Med. Sci. 6, 155–168 (1992).
[CrossRef]

Med. Phys. (7)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Spatial resolution of imaging with diffusing light: edge spread function measurements on a realistic tissue phantom,” Med. Phys. in press (1998).

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

J. C. Hebden, A. H. Gandjbakhche, “Experimental validation of an elementary formula for estimating spatial resolution for optical transillumination imaging,” Med. Phys. 22, 1271–1272 (1995).
[CrossRef] [PubMed]

V. Chernomordik, R. Nossal, A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling arguments,” Med. Phys. 23, 1857–1861 (1996).
[CrossRef] [PubMed]

S. Ertefai, A. E. Profio, “Spectral transmittance and contrast in breast diaphanography,” Med. Phys. 12, 393–400 (1985).
[CrossRef] [PubMed]

A. E. Profio, G. Navarro, O. W. Sartorious, “Scientific basis of breast diaphanography,” Med. Phys. 16, 60–65 (1989).
[CrossRef] [PubMed]

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[CrossRef] [PubMed]

Opt. Laser Technol. (1)

J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995).
[CrossRef]

Opt. Lett. (3)

Optical Radiation Technique in Medicine and Biology (1)

H. Moseley, ed., Optical Radiation Technique in Medicine and Biology, Phys. Med. Biol. 24, 759–996 (1997).

Phys. Med. Biol. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971–1979 (1997).
[CrossRef] [PubMed]

Radiology (1)

B. Monsees, J. M. Destouet, D. Gersell, “Light scan evaluation of nonpalpable breast lesions,” Radiology 163, 467–470 (1987).
[PubMed]

Science (1)

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biological media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Other (2)

C. af Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, S. Svanberg, “Diffusively scattered femtosecond white light examination of breast tissue in vitro and in vivo,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller eds., Proc. SPIE2626, 149–157 (1995).

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “In vivo absorption and scattering spectra of human tissues in the red and near infrared,” in Vol. 21 of 1998 OSA Technical Digest, Advances in Optical Imaging and Photon Migration (Optical Society of America, Washington, D.C., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Geometry and optical properties of the inhomogeneous tissue phantom.

Fig. 2
Fig. 2

Typical time-resolved transmittance data with a fitting curve for μ a = 0.02 cm-1 and μ s ′ = 5 cm-1. The fitting interval (the solid markers), an early gate with D = 0 ns and W = 0.4 ns, and a late gate with D = 4.4 ns and W = 0.8 ns are displayed. The system transfer function (dotted curve) is also reported.

Fig. 3
Fig. 3

μ s ′ images as a function of the background optical properties. Images in the same column correspond to the same background μ s ′: μ s ′ = 5 cm-1 (left), μ s ′ = 10 cm-1 (middle), and μ s ′ = 15 cm-1 (right). Images in the same row correspond to the same background μ a : μ a = 0.02 cm-1 (bottom), μ a = 0.04 cm-1 (middle), and μ a = 0.08 cm-1 (top). The color bars show the range of fitted μ s ′ in cm-1.

Fig. 4
Fig. 4

50% contour lines for the μ s ′ images reported in Fig. 3.

Fig. 5
Fig. 5

Early gate [D = 0 and W = 0.4 ns (left column), 0.6 ns (middle), and 0.8 ns (right)] images as a function of the background optical properties. See Fig. 3 for details on the optical parameters.

Fig. 6
Fig. 6

50% contour lines for the intensity images reported in Fig. 5.

Fig. 7
Fig. 7

Dynamic gate images with W = 0.8 ns and D = 0–4.8 ns in 1.6-ns steps from left to right. Different background scattering values are reported: (a) μ s ′ = 15 cm-1, (b) μ s ′ = 10 cm-1, (c) μ s ′ = 5 cm-1. In each block, different background absorption values are displayed: μ a = 0.02 cm-1 (bottom row), μ a = 0.04 cm-1 (middle), and μ a = 0.08 cm-1 (top).

Fig. 8
Fig. 8

Time-gate images: (a) classic gate images with D = 0 and W = 0.6–3.0 ns; (b) dynamic gate images with W = 0.2 ns and D = 0.4–2.8 ns. W in (a) and D in (b) increase in 0.4-ns steps from left to right. The background optical properties are μ a = 0.08 cm-1, μ s ′ = 15 cm-1.

Tables (4)

Tables Icon

Table 1 Effective Contrast EC s of the Scattering Images Reported in Fig. 3 as a Function of μ s ′ (cm-1) and μ a (cm-1) in the Backgrounda

Tables Icon

Table 2 Equivalent Diameters (cm) of the 50% Contour Lines of the Scattering Images Reported in Fig. 4 as a Function of μ s ′ (cm-1) and μ a (cm-1) in the Background

Tables Icon

Table 3 Effective Contrast EC I of the Early Gated Images Reported in Fig. 5 as a Function of μ s ′ (cm-1) and μ a (cm-1) in the Background

Tables Icon

Table 4 Equivalent Diameters (cm) of the 50% Contour Lines of the Early Gated Images Reported in Fig. 6 as a Function of μ s ′ (cm-1) and μ a (cm-1) in the Background

Metrics