Abstract

The collisional deactivation of the laser excited states A 2Σ+(v′ = 1, N′ = 4, 12) of OH in a flame is studied by measurement of spectrally resolved fluorescence decays in the picosecond time domain. Quenching and depolarization rates, as well as vibrational energy-transfer (VET) and rotational energy-transfer (RET) rates are determined. An empirical model describes the temporal evolution of the quenching and VET rates that emerge from the rotational-state relaxation. Fitting this model to the measured 1–0 and 0–0 fluorescence decays yields the quenching and VET rates of the initially excited rotational state along with those that correspond to a rotationally equilibrated vibronic-state population. VET from the higher rotational state (N′ = 12) shows a tendency for resonant transitions to energetic close-lying levels. RET is investigated by analysis of the temporal evolution of the 1–1 emission band. The observed RET is well described by the energy-corrected sudden-approximation theory in conjunction with a power-gap law.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1961).
    [CrossRef]
  2. I. L. Chidsey, D. R. Crosley, “Calculated rotational transition probabilities for the A– X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–199 (1980).
    [CrossRef]
  3. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).
  4. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” in Prog. Energy Combust. Sci. 21, 203–279 (1995).
  5. D. R. Crosley, “Rotational and translational effects in collisions of electronically excited diatomic hydrides,” J. Phys. Chem. 93, 6273–6282 (1989).
    [CrossRef]
  6. D. R. Crosley, “Semiquantitative laser induced fluorescence in flames,” Combust. Flame 78, 153–167 (1989).
    [CrossRef]
  7. R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence,” Appl. Phys. B 62, 583–599 (1996).
    [CrossRef]
  8. N. Bergano, P. Jaanimagi, M. Salour, “Picosecond laser-spectroscopy measurement of hydroxyl fluorescence in flames,” Opt. Lett. 8, 443–445 (1983).
    [CrossRef] [PubMed]
  9. R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond fluorescence lifetime measurement of the OH radical in an atmospheric pressure flame,” Chem. Phys. Lett. 142, 15–18 (1987).
    [CrossRef]
  10. M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A2Σ+, v′ = 1 and v′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
    [CrossRef]
  11. A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+(v′ = 1) in atmospheric-pressure flames by picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
    [CrossRef]
  12. T. A. Reichardt, M. S. Klassen, G. B. King, N. M. Laurendeau, “Measurements of hydroxyl concentrations and lifetimes in laminar flames using picosecond time-resolved laser-induced fluorescence,” Appl. Opt. 35, 2125–2139 (1996).
    [CrossRef] [PubMed]
  13. R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).
  14. M. W. Sasnett, “Propagation of multimode laser beams—the M2 factor,” in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, Bristol, UK, 1989), pp. 132–142.
  15. R. N. Zare, “Molecular level-crossing spectroscopy,” J. Chem. Phys. 45, 4510–4518 (1966).
    [CrossRef]
  16. P. M. Doherty, D. R. Crosley, “Polarization of laser-induced fluorescence in OH in an atmospheric pressure flame,” Appl. Opt. 23, 713–721 (1984).
    [CrossRef] [PubMed]
  17. P. H. Paul, “Vibrational energy transfer and quenching of OH A2Σ+ (v′ = 1) measured at high temperatures in a shock tube,” J. Phys. Chem. 99, 8472–8476 (1995).
    [CrossRef]
  18. K. R. German, “Direct measurement of the radiative lifetimes of the A2Σ+(V′ = 0) states of OH and OD,” J. Chem. Phys. 62, 2584–2587 (1975);“Radiative and predissociative lifetimes of the v′ = 0, 1 and 2 levels of the A2Σ+ state of OH and OD,” J. Chem. Phys. 63, 5252–5255 (1975).
    [CrossRef]
  19. R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-level-dependent quenching of A2Σ+ OH and OD,” J. Chem. Phys. 82, 4022–4032 (1985).
    [CrossRef]
  20. K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The quantitative LIF determination of OH concentrations in low-pressure flames,” in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 1857–1866.
  21. J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH (A2Σ+) at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
    [CrossRef]
  22. M. P. Lee, R. Kienle, K. Kohse-Höinghaus, “Measurements of rotational energy transfer and quenching in OH A2Σ+, v′ = 0 at elevated temperature,” Appl. Phys. B 58, 447–457 (1994).
    [CrossRef]
  23. R. K. Lengel, D. R. Crosley, “Rotational-dependence of vibrational relaxation in A2Σ+ OH,” Chem. Phys. Lett. 32, 261–264 (1975).
    [CrossRef]
  24. R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978).
    [CrossRef]
  25. G. Smith, D. R. Crosley, “Vibrational energy transfer in A2Σ+ OH in flames,” Appl. Opt. 22, 1428–1430 (1983).
    [CrossRef] [PubMed]
  26. D. R. Crosley, G. P. Smith, “Rotational energy transfer and LIF temperature measurements,” Combust. Flame 44, 27–34 (1982).
    [CrossRef]
  27. D. Stepowski, M. J. Cotterau, “Time resolved study of rotational energy transfer in A2Σ+(v′ = 0) state of OH in a flame by laser induced fluorescence,” J. Chem. Phys. 74, 6674–6679 (1981).
    [CrossRef]
  28. A. T. Hartlieb, D. Markus, W. Kreutner, K. Kohse-Höinghaus, “Measurement of vibrational energy transfer of OH (A2Σ+, v′ = 1 → 0) in low-pressure flames,” Appl. Phys. B 65, 81–91 (1997).
    [CrossRef]
  29. D. R. Crosley, SRI International, Menlo Park, Calif. 94025 (personal communication, 1997).
  30. R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ+(v′ = 1) by collisions with H2O in a low pressure flame,” Chem. Phys. Lett. 182, 623–631 (1991).
    [CrossRef]
  31. M. D. Smooke, J. A. Miller, R. J. Kee, “On the use of adaptive grids in numerically calculating adiabatic flame speeds,” in Numerical Methods in Laminar Flame Propagation, N. Peters, J. Warnatz, eds. (Vieweg, Wiesbaden, Germany, 1982), pp. 65–70.
  32. J. F. Grcar, R. J. Kee, M. D. Smooke, J. A. Miller, “A hybrid Newton/time-integration procedure for the solution of steady, laminar, one-dimensional, premixed flames,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1773–1779.
  33. J. Warnatz, “Rate coefficients in the C/H/O-system,” in Combustion Chemistry, W. C. Gardiner, ed. (Springer-Verlag, Berlin, 1984), pp. 197–360.
    [CrossRef]
  34. D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. 21, 411–734 (1992).
  35. P. W. Fairchild, G. P. Smith, D. R. Crosley, “Collisional quenching of A2Σ+ OH at elevated temperatures,” J. Chem. Phys. 79, 1795–1807 (1983).
    [CrossRef]
  36. J. W. Daily, “Use of rate equations to describe laser excitation in flames,” Appl. Opt. 16, 2322–2327 (1977).
    [CrossRef] [PubMed]
  37. C. Chan, J. W. Daily, “Laser excitation dynamics of OH in flames,” Appl. Opt. 19, 1357–1367 (1980).
    [CrossRef] [PubMed]
  38. T. A. Brunner, D. Pritchard, “Fitting laws for rotationally inelastic collisions,” Adv. Chem. Phys. 50, 589–641 (1982).
    [CrossRef]
  39. R. Goldflam, S. Green, D. J. Kouri, “Infinite order sudden approximation for rotational energy transfer in gaseous mixtures,” J. Chem. Phys. 67, 4149–4161 (1977).
    [CrossRef]
  40. M. H. Alexander, “Rotationally inelastic collisions between a diatomic molecule in a 2Σ+ electronic state and a structureless target,” J. Chem. Phys. 76, 3637–3645 (1982).
    [CrossRef]
  41. A. E. DePristo, S. D. Augustin, R. Ramaswamy, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
    [CrossRef]
  42. T. A. Brunner, R. D. Driver, N. Smith, D. E. Pritchard, “Simple scaling law for rotational-energy transfer in Na2*–Xe collisions,” Phys. Rev. Lett. 41, 856–859 (1978).
    [CrossRef]
  43. J. C. Polanyi, K. B. Woodall, “Mechanism of rotational relaxation,” J. Chem. Phys. 56, 1563–1572 (1972).
    [CrossRef]
  44. I. Procaccia, R. D. Levine, “Cross sections for rotational energy transfer: an information-theoretic synthesis,” J. Chem. Phys. 64, 808–817 (1976).
    [CrossRef]
  45. R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977).
    [CrossRef]
  46. G. P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence in OH: transition probabilities and the influence of energy transfer,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), pp. 1511–1520.
    [CrossRef]
  47. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Time-resolved fluorescence investigation of rotational transfer in A2Σ+(v = 0) OH,” Appl. Opt. 25, 4086–4095 (1986).
    [CrossRef] [PubMed]
  48. J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational energy transfer rates in the v′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991).
    [CrossRef]
  49. R. Kienle, A. Jörg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH (A2Σ+, v′ = 1),” Appl. Phys. B 56, 249–258 (1993).
    [CrossRef]
  50. R. A. Sutherland, R. A. Anderson, “Radiative and predissociative lifetimes of the A2Σ+ state of OH,” J. Chem. Phys. 58, 1226–1234 (1973).
    [CrossRef]
  51. D. R. Yarkony, “A theoretical treatment of the predissociation of the individual rovibronic levels of OH/OD(A2Σ+),” J. Chem. Phys. 97, 1838–1849 (1992).
    [CrossRef]
  52. A. Jörg, U. Meier, K. Kohse-Höinghaus, “Rotational energy transfer in OH (A2Σ+, v′ = 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
    [CrossRef]
  53. A. Jörg, U. Meier, R. Kienle, K. Kohse-Höinghaus, “State-specific rotational energy transfer in OH (A2Σ+, v′ = 0) by some combustion relevant collision partners,” Appl. Phys. B 55, 305–310 (1992).
    [CrossRef]

1997 (1)

A. T. Hartlieb, D. Markus, W. Kreutner, K. Kohse-Höinghaus, “Measurement of vibrational energy transfer of OH (A2Σ+, v′ = 1 → 0) in low-pressure flames,” Appl. Phys. B 65, 81–91 (1997).
[CrossRef]

1996 (3)

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence,” Appl. Phys. B 62, 583–599 (1996).
[CrossRef]

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).

T. A. Reichardt, M. S. Klassen, G. B. King, N. M. Laurendeau, “Measurements of hydroxyl concentrations and lifetimes in laminar flames using picosecond time-resolved laser-induced fluorescence,” Appl. Opt. 35, 2125–2139 (1996).
[CrossRef] [PubMed]

1995 (2)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” in Prog. Energy Combust. Sci. 21, 203–279 (1995).

P. H. Paul, “Vibrational energy transfer and quenching of OH A2Σ+ (v′ = 1) measured at high temperatures in a shock tube,” J. Phys. Chem. 99, 8472–8476 (1995).
[CrossRef]

1994 (1)

M. P. Lee, R. Kienle, K. Kohse-Höinghaus, “Measurements of rotational energy transfer and quenching in OH A2Σ+, v′ = 0 at elevated temperature,” Appl. Phys. B 58, 447–457 (1994).
[CrossRef]

1993 (2)

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+(v′ = 1) in atmospheric-pressure flames by picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

R. Kienle, A. Jörg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH (A2Σ+, v′ = 1),” Appl. Phys. B 56, 249–258 (1993).
[CrossRef]

1992 (3)

D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. 21, 411–734 (1992).

D. R. Yarkony, “A theoretical treatment of the predissociation of the individual rovibronic levels of OH/OD(A2Σ+),” J. Chem. Phys. 97, 1838–1849 (1992).
[CrossRef]

A. Jörg, U. Meier, R. Kienle, K. Kohse-Höinghaus, “State-specific rotational energy transfer in OH (A2Σ+, v′ = 0) by some combustion relevant collision partners,” Appl. Phys. B 55, 305–310 (1992).
[CrossRef]

1991 (2)

J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational energy transfer rates in the v′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991).
[CrossRef]

R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ+(v′ = 1) by collisions with H2O in a low pressure flame,” Chem. Phys. Lett. 182, 623–631 (1991).
[CrossRef]

1990 (2)

M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A2Σ+, v′ = 1 and v′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

A. Jörg, U. Meier, K. Kohse-Höinghaus, “Rotational energy transfer in OH (A2Σ+, v′ = 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
[CrossRef]

1989 (2)

D. R. Crosley, “Rotational and translational effects in collisions of electronically excited diatomic hydrides,” J. Phys. Chem. 93, 6273–6282 (1989).
[CrossRef]

D. R. Crosley, “Semiquantitative laser induced fluorescence in flames,” Combust. Flame 78, 153–167 (1989).
[CrossRef]

1988 (1)

J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH (A2Σ+) at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

1987 (1)

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond fluorescence lifetime measurement of the OH radical in an atmospheric pressure flame,” Chem. Phys. Lett. 142, 15–18 (1987).
[CrossRef]

1986 (1)

1985 (1)

R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-level-dependent quenching of A2Σ+ OH and OD,” J. Chem. Phys. 82, 4022–4032 (1985).
[CrossRef]

1984 (1)

1983 (3)

1982 (3)

T. A. Brunner, D. Pritchard, “Fitting laws for rotationally inelastic collisions,” Adv. Chem. Phys. 50, 589–641 (1982).
[CrossRef]

M. H. Alexander, “Rotationally inelastic collisions between a diatomic molecule in a 2Σ+ electronic state and a structureless target,” J. Chem. Phys. 76, 3637–3645 (1982).
[CrossRef]

D. R. Crosley, G. P. Smith, “Rotational energy transfer and LIF temperature measurements,” Combust. Flame 44, 27–34 (1982).
[CrossRef]

1981 (1)

D. Stepowski, M. J. Cotterau, “Time resolved study of rotational energy transfer in A2Σ+(v′ = 0) state of OH in a flame by laser induced fluorescence,” J. Chem. Phys. 74, 6674–6679 (1981).
[CrossRef]

1980 (2)

I. L. Chidsey, D. R. Crosley, “Calculated rotational transition probabilities for the A– X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–199 (1980).
[CrossRef]

C. Chan, J. W. Daily, “Laser excitation dynamics of OH in flames,” Appl. Opt. 19, 1357–1367 (1980).
[CrossRef] [PubMed]

1979 (1)

A. E. DePristo, S. D. Augustin, R. Ramaswamy, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

1978 (2)

T. A. Brunner, R. D. Driver, N. Smith, D. E. Pritchard, “Simple scaling law for rotational-energy transfer in Na2*–Xe collisions,” Phys. Rev. Lett. 41, 856–859 (1978).
[CrossRef]

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978).
[CrossRef]

1977 (3)

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977).
[CrossRef]

R. Goldflam, S. Green, D. J. Kouri, “Infinite order sudden approximation for rotational energy transfer in gaseous mixtures,” J. Chem. Phys. 67, 4149–4161 (1977).
[CrossRef]

J. W. Daily, “Use of rate equations to describe laser excitation in flames,” Appl. Opt. 16, 2322–2327 (1977).
[CrossRef] [PubMed]

1976 (1)

I. Procaccia, R. D. Levine, “Cross sections for rotational energy transfer: an information-theoretic synthesis,” J. Chem. Phys. 64, 808–817 (1976).
[CrossRef]

1975 (2)

R. K. Lengel, D. R. Crosley, “Rotational-dependence of vibrational relaxation in A2Σ+ OH,” Chem. Phys. Lett. 32, 261–264 (1975).
[CrossRef]

K. R. German, “Direct measurement of the radiative lifetimes of the A2Σ+(V′ = 0) states of OH and OD,” J. Chem. Phys. 62, 2584–2587 (1975);“Radiative and predissociative lifetimes of the v′ = 0, 1 and 2 levels of the A2Σ+ state of OH and OD,” J. Chem. Phys. 63, 5252–5255 (1975).
[CrossRef]

1973 (1)

R. A. Sutherland, R. A. Anderson, “Radiative and predissociative lifetimes of the A2Σ+ state of OH,” J. Chem. Phys. 58, 1226–1234 (1973).
[CrossRef]

1972 (1)

J. C. Polanyi, K. B. Woodall, “Mechanism of rotational relaxation,” J. Chem. Phys. 56, 1563–1572 (1972).
[CrossRef]

1966 (1)

R. N. Zare, “Molecular level-crossing spectroscopy,” J. Chem. Phys. 45, 4510–4518 (1966).
[CrossRef]

1961 (1)

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1961).
[CrossRef]

Alexander, M. H.

M. H. Alexander, “Rotationally inelastic collisions between a diatomic molecule in a 2Σ+ electronic state and a structureless target,” J. Chem. Phys. 76, 3637–3645 (1982).
[CrossRef]

Anderson, R. A.

R. A. Sutherland, R. A. Anderson, “Radiative and predissociative lifetimes of the A2Σ+ state of OH,” J. Chem. Phys. 58, 1226–1234 (1973).
[CrossRef]

Augustin, S. D.

A. E. DePristo, S. D. Augustin, R. Ramaswamy, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

Baulch, D. L.

D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. 21, 411–734 (1992).

Bergano, N.

Brunner, T. A.

T. A. Brunner, D. Pritchard, “Fitting laws for rotationally inelastic collisions,” Adv. Chem. Phys. 50, 589–641 (1982).
[CrossRef]

T. A. Brunner, R. D. Driver, N. Smith, D. E. Pritchard, “Simple scaling law for rotational-energy transfer in Na2*–Xe collisions,” Phys. Rev. Lett. 41, 856–859 (1978).
[CrossRef]

Burris, J.

J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational energy transfer rates in the v′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991).
[CrossRef]

Butler, J.

J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational energy transfer rates in the v′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991).
[CrossRef]

Cattolica, R. J.

R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ+(v′ = 1) by collisions with H2O in a low pressure flame,” Chem. Phys. Lett. 182, 623–631 (1991).
[CrossRef]

Chan, C.

Chidsey, I. L.

I. L. Chidsey, D. R. Crosley, “Calculated rotational transition probabilities for the A– X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–199 (1980).
[CrossRef]

Cobos, C. J.

D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. 21, 411–734 (1992).

Copeland, R. A.

J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH (A2Σ+) at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-level-dependent quenching of A2Σ+ OH and OD,” J. Chem. Phys. 82, 4022–4032 (1985).
[CrossRef]

K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The quantitative LIF determination of OH concentrations in low-pressure flames,” in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 1857–1866.

Cotterau, M. J.

D. Stepowski, M. J. Cotterau, “Time resolved study of rotational energy transfer in A2Σ+(v′ = 0) state of OH in a flame by laser induced fluorescence,” J. Chem. Phys. 74, 6674–6679 (1981).
[CrossRef]

Cox, R. A.

D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. 21, 411–734 (1992).

Crosley, D. R.

D. R. Crosley, “Semiquantitative laser induced fluorescence in flames,” Combust. Flame 78, 153–167 (1989).
[CrossRef]

D. R. Crosley, “Rotational and translational effects in collisions of electronically excited diatomic hydrides,” J. Phys. Chem. 93, 6273–6282 (1989).
[CrossRef]

J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH (A2Σ+) at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-level-dependent quenching of A2Σ+ OH and OD,” J. Chem. Phys. 82, 4022–4032 (1985).
[CrossRef]

P. M. Doherty, D. R. Crosley, “Polarization of laser-induced fluorescence in OH in an atmospheric pressure flame,” Appl. Opt. 23, 713–721 (1984).
[CrossRef] [PubMed]

P. W. Fairchild, G. P. Smith, D. R. Crosley, “Collisional quenching of A2Σ+ OH at elevated temperatures,” J. Chem. Phys. 79, 1795–1807 (1983).
[CrossRef]

G. Smith, D. R. Crosley, “Vibrational energy transfer in A2Σ+ OH in flames,” Appl. Opt. 22, 1428–1430 (1983).
[CrossRef] [PubMed]

D. R. Crosley, G. P. Smith, “Rotational energy transfer and LIF temperature measurements,” Combust. Flame 44, 27–34 (1982).
[CrossRef]

I. L. Chidsey, D. R. Crosley, “Calculated rotational transition probabilities for the A– X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–199 (1980).
[CrossRef]

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978).
[CrossRef]

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977).
[CrossRef]

R. K. Lengel, D. R. Crosley, “Rotational-dependence of vibrational relaxation in A2Σ+ OH,” Chem. Phys. Lett. 32, 261–264 (1975).
[CrossRef]

K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The quantitative LIF determination of OH concentrations in low-pressure flames,” in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 1857–1866.

G. P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence in OH: transition probabilities and the influence of energy transfer,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), pp. 1511–1520.
[CrossRef]

D. R. Crosley, SRI International, Menlo Park, Calif. 94025 (personal communication, 1997).

Crosswhite, H. M.

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1961).
[CrossRef]

Daily, J. W.

DePristo, A. E.

A. E. DePristo, S. D. Augustin, R. Ramaswamy, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

Dieke, G. H.

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1961).
[CrossRef]

Doherty, P. M.

Dreizler, A.

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+(v′ = 1) in atmospheric-pressure flames by picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

Driver, R. D.

T. A. Brunner, R. D. Driver, N. Smith, D. E. Pritchard, “Simple scaling law for rotational-energy transfer in Na2*–Xe collisions,” Phys. Rev. Lett. 41, 856–859 (1978).
[CrossRef]

Dyer, M. J.

R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-level-dependent quenching of A2Σ+ OH and OD,” J. Chem. Phys. 82, 4022–4032 (1985).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).

Esser, C.

D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. 21, 411–734 (1992).

Fairchild, P. W.

P. W. Fairchild, G. P. Smith, D. R. Crosley, “Collisional quenching of A2Σ+ OH at elevated temperatures,” J. Chem. Phys. 79, 1795–1807 (1983).
[CrossRef]

Frank, P.

D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. 21, 411–734 (1992).

German, K. R.

K. R. German, “Direct measurement of the radiative lifetimes of the A2Σ+(V′ = 0) states of OH and OD,” J. Chem. Phys. 62, 2584–2587 (1975);“Radiative and predissociative lifetimes of the v′ = 0, 1 and 2 levels of the A2Σ+ state of OH and OD,” J. Chem. Phys. 63, 5252–5255 (1975).
[CrossRef]

Goldflam, R.

R. Goldflam, S. Green, D. J. Kouri, “Infinite order sudden approximation for rotational energy transfer in gaseous mixtures,” J. Chem. Phys. 67, 4149–4161 (1977).
[CrossRef]

Grcar, J. F.

J. F. Grcar, R. J. Kee, M. D. Smooke, J. A. Miller, “A hybrid Newton/time-integration procedure for the solution of steady, laminar, one-dimensional, premixed flames,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1773–1779.

Green, S.

R. Goldflam, S. Green, D. J. Kouri, “Infinite order sudden approximation for rotational energy transfer in gaseous mixtures,” J. Chem. Phys. 67, 4149–4161 (1977).
[CrossRef]

Hartlieb, A. T.

A. T. Hartlieb, D. Markus, W. Kreutner, K. Kohse-Höinghaus, “Measurement of vibrational energy transfer of OH (A2Σ+, v′ = 1 → 0) in low-pressure flames,” Appl. Phys. B 65, 81–91 (1997).
[CrossRef]

Heaps, W.

J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational energy transfer rates in the v′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991).
[CrossRef]

Jaanimagi, P.

Jeffries, J. B.

J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH (A2Σ+) at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The quantitative LIF determination of OH concentrations in low-pressure flames,” in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 1857–1866.

Jörg, A.

R. Kienle, A. Jörg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH (A2Σ+, v′ = 1),” Appl. Phys. B 56, 249–258 (1993).
[CrossRef]

A. Jörg, U. Meier, R. Kienle, K. Kohse-Höinghaus, “State-specific rotational energy transfer in OH (A2Σ+, v′ = 0) by some combustion relevant collision partners,” Appl. Phys. B 55, 305–310 (1992).
[CrossRef]

A. Jörg, U. Meier, K. Kohse-Höinghaus, “Rotational energy transfer in OH (A2Σ+, v′ = 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
[CrossRef]

Just, Th.

D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. 21, 411–734 (1992).

Kee, R. J.

M. D. Smooke, J. A. Miller, R. J. Kee, “On the use of adaptive grids in numerically calculating adiabatic flame speeds,” in Numerical Methods in Laminar Flame Propagation, N. Peters, J. Warnatz, eds. (Vieweg, Wiesbaden, Germany, 1982), pp. 65–70.

J. F. Grcar, R. J. Kee, M. D. Smooke, J. A. Miller, “A hybrid Newton/time-integration procedure for the solution of steady, laminar, one-dimensional, premixed flames,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1773–1779.

Kerr, J. A.

D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. 21, 411–734 (1992).

Kienle, R.

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence,” Appl. Phys. B 62, 583–599 (1996).
[CrossRef]

M. P. Lee, R. Kienle, K. Kohse-Höinghaus, “Measurements of rotational energy transfer and quenching in OH A2Σ+, v′ = 0 at elevated temperature,” Appl. Phys. B 58, 447–457 (1994).
[CrossRef]

R. Kienle, A. Jörg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH (A2Σ+, v′ = 1),” Appl. Phys. B 56, 249–258 (1993).
[CrossRef]

A. Jörg, U. Meier, R. Kienle, K. Kohse-Höinghaus, “State-specific rotational energy transfer in OH (A2Σ+, v′ = 0) by some combustion relevant collision partners,” Appl. Phys. B 55, 305–310 (1992).
[CrossRef]

King, G. B.

Klassen, M. S.

Kohse-Höinghaus, K.

A. T. Hartlieb, D. Markus, W. Kreutner, K. Kohse-Höinghaus, “Measurement of vibrational energy transfer of OH (A2Σ+, v′ = 1 → 0) in low-pressure flames,” Appl. Phys. B 65, 81–91 (1997).
[CrossRef]

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence,” Appl. Phys. B 62, 583–599 (1996).
[CrossRef]

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” in Prog. Energy Combust. Sci. 21, 203–279 (1995).

M. P. Lee, R. Kienle, K. Kohse-Höinghaus, “Measurements of rotational energy transfer and quenching in OH A2Σ+, v′ = 0 at elevated temperature,” Appl. Phys. B 58, 447–457 (1994).
[CrossRef]

R. Kienle, A. Jörg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH (A2Σ+, v′ = 1),” Appl. Phys. B 56, 249–258 (1993).
[CrossRef]

A. Jörg, U. Meier, R. Kienle, K. Kohse-Höinghaus, “State-specific rotational energy transfer in OH (A2Σ+, v′ = 0) by some combustion relevant collision partners,” Appl. Phys. B 55, 305–310 (1992).
[CrossRef]

A. Jörg, U. Meier, K. Kohse-Höinghaus, “Rotational energy transfer in OH (A2Σ+, v′ = 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
[CrossRef]

J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH (A2Σ+) at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The quantitative LIF determination of OH concentrations in low-pressure flames,” in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 1857–1866.

Köllner, M.

M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A2Σ+, v′ = 1 and v′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

Kouri, D. J.

R. Goldflam, S. Green, D. J. Kouri, “Infinite order sudden approximation for rotational energy transfer in gaseous mixtures,” J. Chem. Phys. 67, 4149–4161 (1977).
[CrossRef]

Kreutner, W.

A. T. Hartlieb, D. Markus, W. Kreutner, K. Kohse-Höinghaus, “Measurement of vibrational energy transfer of OH (A2Σ+, v′ = 1 → 0) in low-pressure flames,” Appl. Phys. B 65, 81–91 (1997).
[CrossRef]

Laurendeau, N. M.

Lee, M. P.

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence,” Appl. Phys. B 62, 583–599 (1996).
[CrossRef]

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).

M. P. Lee, R. Kienle, K. Kohse-Höinghaus, “Measurements of rotational energy transfer and quenching in OH A2Σ+, v′ = 0 at elevated temperature,” Appl. Phys. B 58, 447–457 (1994).
[CrossRef]

Lengel, R. K.

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978).
[CrossRef]

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977).
[CrossRef]

R. K. Lengel, D. R. Crosley, “Rotational-dependence of vibrational relaxation in A2Σ+ OH,” Chem. Phys. Lett. 32, 261–264 (1975).
[CrossRef]

Levine, R. D.

I. Procaccia, R. D. Levine, “Cross sections for rotational energy transfer: an information-theoretic synthesis,” J. Chem. Phys. 64, 808–817 (1976).
[CrossRef]

Lucht, R. P.

Markus, D.

A. T. Hartlieb, D. Markus, W. Kreutner, K. Kohse-Höinghaus, “Measurement of vibrational energy transfer of OH (A2Σ+, v′ = 1 → 0) in low-pressure flames,” Appl. Phys. B 65, 81–91 (1997).
[CrossRef]

Mataga, T. G.

R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ+(v′ = 1) by collisions with H2O in a low pressure flame,” Chem. Phys. Lett. 182, 623–631 (1991).
[CrossRef]

McGee, T.

J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational energy transfer rates in the v′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991).
[CrossRef]

Meier, U.

A. Jörg, U. Meier, R. Kienle, K. Kohse-Höinghaus, “State-specific rotational energy transfer in OH (A2Σ+, v′ = 0) by some combustion relevant collision partners,” Appl. Phys. B 55, 305–310 (1992).
[CrossRef]

A. Jörg, U. Meier, K. Kohse-Höinghaus, “Rotational energy transfer in OH (A2Σ+, v′ = 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
[CrossRef]

Miller, J. A.

M. D. Smooke, J. A. Miller, R. J. Kee, “On the use of adaptive grids in numerically calculating adiabatic flame speeds,” in Numerical Methods in Laminar Flame Propagation, N. Peters, J. Warnatz, eds. (Vieweg, Wiesbaden, Germany, 1982), pp. 65–70.

J. F. Grcar, R. J. Kee, M. D. Smooke, J. A. Miller, “A hybrid Newton/time-integration procedure for the solution of steady, laminar, one-dimensional, premixed flames,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1773–1779.

Monkhouse, P.

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+(v′ = 1) in atmospheric-pressure flames by picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A2Σ+, v′ = 1 and v′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond fluorescence lifetime measurement of the OH radical in an atmospheric pressure flame,” Chem. Phys. Lett. 142, 15–18 (1987).
[CrossRef]

Paul, P. H.

P. H. Paul, “Vibrational energy transfer and quenching of OH A2Σ+ (v′ = 1) measured at high temperatures in a shock tube,” J. Phys. Chem. 99, 8472–8476 (1995).
[CrossRef]

Pilling, M. J.

D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. 21, 411–734 (1992).

Polanyi, J. C.

J. C. Polanyi, K. B. Woodall, “Mechanism of rotational relaxation,” J. Chem. Phys. 56, 1563–1572 (1972).
[CrossRef]

Pritchard, D.

T. A. Brunner, D. Pritchard, “Fitting laws for rotationally inelastic collisions,” Adv. Chem. Phys. 50, 589–641 (1982).
[CrossRef]

Pritchard, D. E.

T. A. Brunner, R. D. Driver, N. Smith, D. E. Pritchard, “Simple scaling law for rotational-energy transfer in Na2*–Xe collisions,” Phys. Rev. Lett. 41, 856–859 (1978).
[CrossRef]

Procaccia, I.

I. Procaccia, R. D. Levine, “Cross sections for rotational energy transfer: an information-theoretic synthesis,” J. Chem. Phys. 64, 808–817 (1976).
[CrossRef]

Rabitz, H.

A. E. DePristo, S. D. Augustin, R. Ramaswamy, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

Ramaswamy, R.

A. E. DePristo, S. D. Augustin, R. Ramaswamy, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

Reichardt, T. A.

Salour, M.

Sasnett, M. W.

M. W. Sasnett, “Propagation of multimode laser beams—the M2 factor,” in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, Bristol, UK, 1989), pp. 132–142.

Schwarzwald, R.

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond fluorescence lifetime measurement of the OH radical in an atmospheric pressure flame,” Chem. Phys. Lett. 142, 15–18 (1987).
[CrossRef]

Smith, G.

Smith, G. P.

J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH (A2Σ+) at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

P. W. Fairchild, G. P. Smith, D. R. Crosley, “Collisional quenching of A2Σ+ OH at elevated temperatures,” J. Chem. Phys. 79, 1795–1807 (1983).
[CrossRef]

D. R. Crosley, G. P. Smith, “Rotational energy transfer and LIF temperature measurements,” Combust. Flame 44, 27–34 (1982).
[CrossRef]

K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The quantitative LIF determination of OH concentrations in low-pressure flames,” in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 1857–1866.

G. P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence in OH: transition probabilities and the influence of energy transfer,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), pp. 1511–1520.
[CrossRef]

Smith, N.

T. A. Brunner, R. D. Driver, N. Smith, D. E. Pritchard, “Simple scaling law for rotational-energy transfer in Na2*–Xe collisions,” Phys. Rev. Lett. 41, 856–859 (1978).
[CrossRef]

Smooke, M. D.

M. D. Smooke, J. A. Miller, R. J. Kee, “On the use of adaptive grids in numerically calculating adiabatic flame speeds,” in Numerical Methods in Laminar Flame Propagation, N. Peters, J. Warnatz, eds. (Vieweg, Wiesbaden, Germany, 1982), pp. 65–70.

J. F. Grcar, R. J. Kee, M. D. Smooke, J. A. Miller, “A hybrid Newton/time-integration procedure for the solution of steady, laminar, one-dimensional, premixed flames,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1773–1779.

Stepowski, D.

D. Stepowski, M. J. Cotterau, “Time resolved study of rotational energy transfer in A2Σ+(v′ = 0) state of OH in a flame by laser induced fluorescence,” J. Chem. Phys. 74, 6674–6679 (1981).
[CrossRef]

Sutherland, R. A.

R. A. Sutherland, R. A. Anderson, “Radiative and predissociative lifetimes of the A2Σ+ state of OH,” J. Chem. Phys. 58, 1226–1234 (1973).
[CrossRef]

Sweeney, D. W.

Tadday, R.

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+(v′ = 1) in atmospheric-pressure flames by picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

Troe, J.

D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. 21, 411–734 (1992).

Walker, R. W.

D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. 21, 411–734 (1992).

Warnatz, J.

D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. 21, 411–734 (1992).

J. Warnatz, “Rate coefficients in the C/H/O-system,” in Combustion Chemistry, W. C. Gardiner, ed. (Springer-Verlag, Berlin, 1984), pp. 197–360.
[CrossRef]

Wolfrum, J.

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+(v′ = 1) in atmospheric-pressure flames by picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A2Σ+, v′ = 1 and v′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond fluorescence lifetime measurement of the OH radical in an atmospheric pressure flame,” Chem. Phys. Lett. 142, 15–18 (1987).
[CrossRef]

Woodall, K. B.

J. C. Polanyi, K. B. Woodall, “Mechanism of rotational relaxation,” J. Chem. Phys. 56, 1563–1572 (1972).
[CrossRef]

Yarkony, D. R.

D. R. Yarkony, “A theoretical treatment of the predissociation of the individual rovibronic levels of OH/OD(A2Σ+),” J. Chem. Phys. 97, 1838–1849 (1992).
[CrossRef]

Zare, R. N.

R. N. Zare, “Molecular level-crossing spectroscopy,” J. Chem. Phys. 45, 4510–4518 (1966).
[CrossRef]

Adv. Chem. Phys. (1)

T. A. Brunner, D. Pritchard, “Fitting laws for rotationally inelastic collisions,” Adv. Chem. Phys. 50, 589–641 (1982).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (7)

R. Kienle, A. Jörg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH (A2Σ+, v′ = 1),” Appl. Phys. B 56, 249–258 (1993).
[CrossRef]

A. Jörg, U. Meier, R. Kienle, K. Kohse-Höinghaus, “State-specific rotational energy transfer in OH (A2Σ+, v′ = 0) by some combustion relevant collision partners,” Appl. Phys. B 55, 305–310 (1992).
[CrossRef]

A. T. Hartlieb, D. Markus, W. Kreutner, K. Kohse-Höinghaus, “Measurement of vibrational energy transfer of OH (A2Σ+, v′ = 1 → 0) in low-pressure flames,” Appl. Phys. B 65, 81–91 (1997).
[CrossRef]

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence,” Appl. Phys. B 62, 583–599 (1996).
[CrossRef]

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+(v′ = 1) in atmospheric-pressure flames by picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).

M. P. Lee, R. Kienle, K. Kohse-Höinghaus, “Measurements of rotational energy transfer and quenching in OH A2Σ+, v′ = 0 at elevated temperature,” Appl. Phys. B 58, 447–457 (1994).
[CrossRef]

Chem. Phys. (1)

J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational energy transfer rates in the v′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991).
[CrossRef]

Chem. Phys. Lett. (5)

R. K. Lengel, D. R. Crosley, “Rotational-dependence of vibrational relaxation in A2Σ+ OH,” Chem. Phys. Lett. 32, 261–264 (1975).
[CrossRef]

J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH (A2Σ+) at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond fluorescence lifetime measurement of the OH radical in an atmospheric pressure flame,” Chem. Phys. Lett. 142, 15–18 (1987).
[CrossRef]

M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A2Σ+, v′ = 1 and v′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990).
[CrossRef]

R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ+(v′ = 1) by collisions with H2O in a low pressure flame,” Chem. Phys. Lett. 182, 623–631 (1991).
[CrossRef]

Combust. Flame (2)

D. R. Crosley, G. P. Smith, “Rotational energy transfer and LIF temperature measurements,” Combust. Flame 44, 27–34 (1982).
[CrossRef]

D. R. Crosley, “Semiquantitative laser induced fluorescence in flames,” Combust. Flame 78, 153–167 (1989).
[CrossRef]

J. Chem. Phys. (15)

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978).
[CrossRef]

R. N. Zare, “Molecular level-crossing spectroscopy,” J. Chem. Phys. 45, 4510–4518 (1966).
[CrossRef]

K. R. German, “Direct measurement of the radiative lifetimes of the A2Σ+(V′ = 0) states of OH and OD,” J. Chem. Phys. 62, 2584–2587 (1975);“Radiative and predissociative lifetimes of the v′ = 0, 1 and 2 levels of the A2Σ+ state of OH and OD,” J. Chem. Phys. 63, 5252–5255 (1975).
[CrossRef]

R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-level-dependent quenching of A2Σ+ OH and OD,” J. Chem. Phys. 82, 4022–4032 (1985).
[CrossRef]

D. Stepowski, M. J. Cotterau, “Time resolved study of rotational energy transfer in A2Σ+(v′ = 0) state of OH in a flame by laser induced fluorescence,” J. Chem. Phys. 74, 6674–6679 (1981).
[CrossRef]

R. Goldflam, S. Green, D. J. Kouri, “Infinite order sudden approximation for rotational energy transfer in gaseous mixtures,” J. Chem. Phys. 67, 4149–4161 (1977).
[CrossRef]

M. H. Alexander, “Rotationally inelastic collisions between a diatomic molecule in a 2Σ+ electronic state and a structureless target,” J. Chem. Phys. 76, 3637–3645 (1982).
[CrossRef]

A. E. DePristo, S. D. Augustin, R. Ramaswamy, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

J. C. Polanyi, K. B. Woodall, “Mechanism of rotational relaxation,” J. Chem. Phys. 56, 1563–1572 (1972).
[CrossRef]

I. Procaccia, R. D. Levine, “Cross sections for rotational energy transfer: an information-theoretic synthesis,” J. Chem. Phys. 64, 808–817 (1976).
[CrossRef]

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977).
[CrossRef]

P. W. Fairchild, G. P. Smith, D. R. Crosley, “Collisional quenching of A2Σ+ OH at elevated temperatures,” J. Chem. Phys. 79, 1795–1807 (1983).
[CrossRef]

R. A. Sutherland, R. A. Anderson, “Radiative and predissociative lifetimes of the A2Σ+ state of OH,” J. Chem. Phys. 58, 1226–1234 (1973).
[CrossRef]

D. R. Yarkony, “A theoretical treatment of the predissociation of the individual rovibronic levels of OH/OD(A2Σ+),” J. Chem. Phys. 97, 1838–1849 (1992).
[CrossRef]

A. Jörg, U. Meier, K. Kohse-Höinghaus, “Rotational energy transfer in OH (A2Σ+, v′ = 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
[CrossRef]

J. Phys. Chem. (3)

D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. 21, 411–734 (1992).

P. H. Paul, “Vibrational energy transfer and quenching of OH A2Σ+ (v′ = 1) measured at high temperatures in a shock tube,” J. Phys. Chem. 99, 8472–8476 (1995).
[CrossRef]

D. R. Crosley, “Rotational and translational effects in collisions of electronically excited diatomic hydrides,” J. Phys. Chem. 93, 6273–6282 (1989).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1961).
[CrossRef]

I. L. Chidsey, D. R. Crosley, “Calculated rotational transition probabilities for the A– X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–199 (1980).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

T. A. Brunner, R. D. Driver, N. Smith, D. E. Pritchard, “Simple scaling law for rotational-energy transfer in Na2*–Xe collisions,” Phys. Rev. Lett. 41, 856–859 (1978).
[CrossRef]

Prog. Energy Combust. Sci. (1)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” in Prog. Energy Combust. Sci. 21, 203–279 (1995).

Other (8)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).

M. W. Sasnett, “Propagation of multimode laser beams—the M2 factor,” in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, Bristol, UK, 1989), pp. 132–142.

K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The quantitative LIF determination of OH concentrations in low-pressure flames,” in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 1857–1866.

G. P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence in OH: transition probabilities and the influence of energy transfer,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), pp. 1511–1520.
[CrossRef]

D. R. Crosley, SRI International, Menlo Park, Calif. 94025 (personal communication, 1997).

M. D. Smooke, J. A. Miller, R. J. Kee, “On the use of adaptive grids in numerically calculating adiabatic flame speeds,” in Numerical Methods in Laminar Flame Propagation, N. Peters, J. Warnatz, eds. (Vieweg, Wiesbaden, Germany, 1982), pp. 65–70.

J. F. Grcar, R. J. Kee, M. D. Smooke, J. A. Miller, “A hybrid Newton/time-integration procedure for the solution of steady, laminar, one-dimensional, premixed flames,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1773–1779.

J. Warnatz, “Rate coefficients in the C/H/O-system,” in Combustion Chemistry, W. C. Gardiner, ed. (Springer-Verlag, Berlin, 1984), pp. 197–360.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup: THG, third-harmonic generation; Ti:S, Ti:sapphire; KLM, Kerr-lens mode locked.

Fig. 2
Fig. 2

Measured temporal evolution of the 1–1 LIF emission spectrum for vertical (solid curves) and horizontal (dashed curves) laser polarization for (a) N′ = 4 and (b) N′ = 12 excitation.

Fig. 3
Fig. 3

LIF polarization versus time of the Q and P lines emitted from the laser-excited rotational state and of the spectrally integrated 1–1 emission band following (a) Q 14 and (b) Q 112 excitation. The thin solid curves show the exponential fit to the data.

Fig. 4
Fig. 4

A 2Σ+ - X 2Π (1, 0) band emission on a logarithmic scale versus time following Q 14 (solid curve) and Q 112 (dashed curve) excitation. With progressing time the two curves converge to a common slope, which is indicated by the straight line.

Fig. 5
Fig. 5

Temporal evolution of the isolated part of the 0–0 emission band (solid curves) and the corresponding temperature fits (dashed curves) following (a) Q 14 and (b) Q 112 excitation. Each spectrum is averaged over 500 ps.

Fig. 6
Fig. 6

Apparent rotational temperature of the v′ = 0 vibrational level versus time obtained from single temperature fits.

Fig. 7
Fig. 7

Solid curves, temporal evolution of the v′ = 1 and v′ = 0 state populations following (a) Q 14 and (b) Q 112 excitation. Dashed curves, nonlinear least-squares fit from the time-dependent rate model.

Fig. 8
Fig. 8

Temporal evolution of the isotropic 1–1 band emission for (a) N′ = 4 and (b) N′ = 12 (b) excitation. Solid curves, experiment; dashed curves, nonlinear least-squares fit obtained from application of the ECS RET model. Each individual (experimental and simulated) spectrum is averaged over 100 ps.

Fig. 9
Fig. 9

Total RET rate k L as a function of rotational level as calculated by application of the ECS model (solid curve) and the sudden approximation (dashed curve). Symbols, total RET rates obtained in this research by direct fitting of the emissions by the laser-excited rotational state: triangles, Q lines; circles, P lines.

Fig. 10
Fig. 10

Time-integrated population ratio n 0/n 1 as a function of the laser-excited rotational state computed from the ECS model (solid curve). Symbols, results derived from experimental data: circles, this work (see Section 4); diamonds, Ref. 25.

Fig. 11
Fig. 11

Temporal evolution of the total v′ = 1 quenching and VET rates computed from the ECS model for Q 14 (thicker solid curves) and Q 112 (dashed curves) excitation. For comparison the corresponding rates obtained in Section 4 from the time-dependent rate model are plotted with the thinner solid curves.

Tables (6)

Tables Icon

Table 1 Transitions Overlapping the Bandwidth of the Laser Pulse, the Corresponding Excited States, and Their Contributions p to the Overall Vibronic Excitation for Q14 and Q112 Excitation

Tables Icon

Table 2 Depolarization Ratesa

Tables Icon

Table 3 Quenching and VET Rates (in units of 108 s-1)

Tables Icon

Table 4 Published Quenching and VET Cross Sections of OH for the Major Collision Species and Their Concentrations c

Tables Icon

Table 5 ECS Parameters γ, lc, and k0 Depending on the Modela

Tables Icon

Table 6 Total RET Rates kL and Relative State Relaxation Rates kR (in units of 108 s-1)a

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

P = I - I I + I I v - I h I v .
I iso I + 2 I I v + I h / 2 .
d n 1 d t = - Q 1 + A 1 + v 10 n 1 + v 01 n 0 + E δ t ,
d n 0 d t = - Q 0 + A 0 + v 01 n 0 + v 10 n 1 ,
Q 1 t = Q 1 th + Q 1 N - Q 1 th exp - k Q t ,
v 10 t = v 10 th + v 10 N - v 10 th exp - k v t
v 10 th v 01 = f B v = 0 f B v = 1 ,
Q 1 N = 9.6   exp - 0.0033 N N + 1 ,
v 10 N = 6.0   exp - 0.0087 N N + 1 .
k = n 0 i   c i v i - OH σ i ,
v i - OH = 8 kT / π μ i - OH 1 / 2
d n 1 i d t = - Q 1 i + v 10 i + i j   k ij n 1 i + i j   k ji n 1 j + v 01 i n 0 + E i δ t ,
k ij = k NJ N J = 2 J + 1 l   | A l NN | 2 M l NJN J k l ,
M l NJN J = 2 l + 1 1 2 1 - ε ε - 1 J + J + l J l J 1 / 2 0 1 / 2 2
A l NN = 24 v th 2 2 + E l - E l - 1 2 l c 2 24 v th 2 2 + E N - E N - 1 2 l c 2
k l = k l , l + 1 / 2 0 , 1 / 2 = k 0 2 E l E l = 1 - γ ,
d n 1 L d t = - k t n 1 L .
k t = k + k 0 - k exp - k R t .

Metrics