Abstract

Three serial photoacoustic cells are employed within the cavity of a liquid-nitrogen-cooled CO laser to monitor on-line trace-gas concentrations. Multicomponent gas analysis is performed on sequential repetitive measurements of ethylene, acetaldehyde, CO2, ethanol, and H2O. To demonstrate the high sensitivity of the laser photoacoustic detector for the biologically interesting gases, acetaldehyde (0.1-parts per billion in volume detection limit) and ethanol (10 parts per billion in volume), we follow the time-dependent release by cherry tomatoes during changing aerobic–anaerobic conditions.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Slanina, Biosphere Atmosphere Exchange of Pollutants and Trace Substances (Springer-Verlag, Berlin, 1997).
    [CrossRef]
  2. Z. W. Weitz, A. J. Birnbaum, P. A. Sobotka, E. J. Zarling, J. L. Skosey, “High breath pentane concentrations during acute myocardial infarction,” Lancet 337, 933–935 (1991).
    [CrossRef]
  3. T. W. Kimmerer, T. T. Kozlowski, “Ethylene, ethane, acetaldehyde and ethanol production by plants under stress,” Plant Physiol. 69, 840–847 (1982).
    [CrossRef] [PubMed]
  4. M. W. Sigrist, Air Monitoring by Spectroscopic Techniques (Wiley, New York, 1994).
  5. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
    [CrossRef]
  6. F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B. 50, 137–144 (1990).
    [CrossRef]
  7. H. S. M. de Vries, F. J. M. Harren, L. A. C. J. Voesenek, C. W. P. M. Blom, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Investigation of local ethylene emission from intact Cherry tomatoes by means of photothermal deflection and photoacoustic detection,” Plant Physiol. 107, 1371–1377 (1995).
  8. S. B. Tilden, M. Bonner Denton, “A comparison of data reduction techniques for line excited optoacoustic analysis of mixtures,” Appl. Spectrosc. 39, 1017–1022 (1985).
    [CrossRef]
  9. P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
    [CrossRef]
  10. S. Bernegger, M. W. Sigrist, “CO laser photoacoustic spectroscopy of gases and vapors for trace gas analysis,” Infrared Phys. 30, 375–429 (1990).
    [CrossRef]
  11. W. Urban, in Frontiers of Laser Spectroscopy of Gases, A. C. P. Alves, J. M. Brown, M. Hollas, eds., Vol. 234 of NATO Advanced Studies Institute Series (Kluwer Academic, Dordrecht, The Netherlands, 1988), pp. 9–42.
  12. T. C. Lioutas, “Challenges of controlled and modified atmosphere packaging: a food company’s perspective,” Food Technol. 42, 78–86 (1988).
  13. F. G. C. Bijnen, F. J. M. Harren, J. H. P. Hackstein, J. Reuss, “Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O, and CO2 emission by cockroaches and scarab beetles,” Appl. Opt. 35, 5357–5368 (1996).
    [CrossRef]
  14. F. G. C. Bijnen, J. Reuss, F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum. 67, 2914–2923 (1996).
    [CrossRef]
  15. A. Thöny, M. W. Sigrist, “New developments in CO2 laser photoacoustic monitoring of trace gases,” Infrared Phys. Technol. 36, 585–615 (1995).
    [CrossRef]
  16. W. H. Press, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).
  17. D. R. Lide, Handbook of Chemistry and Physics, 73rd ed. (CRC Press, Boca Raton, Fla., 1992), pp. 6-69–6-99.
  18. A. W. Tickner, F. P. Lossing, “Measurements of low vapor pressures,” J. Phys. Chem. 55, 733–738 (1951).
    [CrossRef]
  19. F. B. Abeles, P. W. Morgan, M. E. Saltveit, Ethylene in Plant Biology, 1st ed. (Academic, San Diego, Calif., 1992).
  20. H. S. M. de Vries, M. A. J. Wasono, F. J. M. Harren, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Ethylene and CO2 emission rates and pathways in harvested fruits investigated, in situ, by laser photodeflection and photoacoustic techniques,” Postharvest Biol. Technol. 8, 1–10 (1996).
    [CrossRef]
  21. F. B. Salisbury, C. W. Ross, Plant Physiology (Wadsworth, Belmont, Calif., 1992).
  22. P. Perata, A. Alpi, “Ethanol induced injuries to carrot cells, the role of acetaldehyde,” Plant Physiol. 95, 748–752 (1991).
    [CrossRef]
  23. W. Armstrong, R. Brändle, M. B. Jackson, “Mechanisms of flood tolerance in plants,” Acta Bot. Neerl. 43, 307–358 (1994).
  24. L. S. Monk, R. Brändle, R. M. M. Crawford, “Catalase activity and post-anoxic injury in monocotyledonous species,” J. Exp. Bot. 38, 233–246 (1987).
    [CrossRef]

1996

F. G. C. Bijnen, F. J. M. Harren, J. H. P. Hackstein, J. Reuss, “Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O, and CO2 emission by cockroaches and scarab beetles,” Appl. Opt. 35, 5357–5368 (1996).
[CrossRef]

F. G. C. Bijnen, J. Reuss, F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum. 67, 2914–2923 (1996).
[CrossRef]

H. S. M. de Vries, M. A. J. Wasono, F. J. M. Harren, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Ethylene and CO2 emission rates and pathways in harvested fruits investigated, in situ, by laser photodeflection and photoacoustic techniques,” Postharvest Biol. Technol. 8, 1–10 (1996).
[CrossRef]

1995

A. Thöny, M. W. Sigrist, “New developments in CO2 laser photoacoustic monitoring of trace gases,” Infrared Phys. Technol. 36, 585–615 (1995).
[CrossRef]

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

H. S. M. de Vries, F. J. M. Harren, L. A. C. J. Voesenek, C. W. P. M. Blom, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Investigation of local ethylene emission from intact Cherry tomatoes by means of photothermal deflection and photoacoustic detection,” Plant Physiol. 107, 1371–1377 (1995).

1994

W. Armstrong, R. Brändle, M. B. Jackson, “Mechanisms of flood tolerance in plants,” Acta Bot. Neerl. 43, 307–358 (1994).

1991

P. Perata, A. Alpi, “Ethanol induced injuries to carrot cells, the role of acetaldehyde,” Plant Physiol. 95, 748–752 (1991).
[CrossRef]

Z. W. Weitz, A. J. Birnbaum, P. A. Sobotka, E. J. Zarling, J. L. Skosey, “High breath pentane concentrations during acute myocardial infarction,” Lancet 337, 933–935 (1991).
[CrossRef]

1990

F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B. 50, 137–144 (1990).
[CrossRef]

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

S. Bernegger, M. W. Sigrist, “CO laser photoacoustic spectroscopy of gases and vapors for trace gas analysis,” Infrared Phys. 30, 375–429 (1990).
[CrossRef]

1988

T. C. Lioutas, “Challenges of controlled and modified atmosphere packaging: a food company’s perspective,” Food Technol. 42, 78–86 (1988).

1987

L. S. Monk, R. Brändle, R. M. M. Crawford, “Catalase activity and post-anoxic injury in monocotyledonous species,” J. Exp. Bot. 38, 233–246 (1987).
[CrossRef]

1985

1982

T. W. Kimmerer, T. T. Kozlowski, “Ethylene, ethane, acetaldehyde and ethanol production by plants under stress,” Plant Physiol. 69, 840–847 (1982).
[CrossRef] [PubMed]

1951

A. W. Tickner, F. P. Lossing, “Measurements of low vapor pressures,” J. Phys. Chem. 55, 733–738 (1951).
[CrossRef]

Abeles, F. B.

F. B. Abeles, P. W. Morgan, M. E. Saltveit, Ethylene in Plant Biology, 1st ed. (Academic, San Diego, Calif., 1992).

Alpi, A.

P. Perata, A. Alpi, “Ethanol induced injuries to carrot cells, the role of acetaldehyde,” Plant Physiol. 95, 748–752 (1991).
[CrossRef]

Armstrong, W.

W. Armstrong, R. Brändle, M. B. Jackson, “Mechanisms of flood tolerance in plants,” Acta Bot. Neerl. 43, 307–358 (1994).

Bernegger, S.

S. Bernegger, M. W. Sigrist, “CO laser photoacoustic spectroscopy of gases and vapors for trace gas analysis,” Infrared Phys. 30, 375–429 (1990).
[CrossRef]

Bijnen, F. G. C.

F. G. C. Bijnen, F. J. M. Harren, J. H. P. Hackstein, J. Reuss, “Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O, and CO2 emission by cockroaches and scarab beetles,” Appl. Opt. 35, 5357–5368 (1996).
[CrossRef]

F. G. C. Bijnen, J. Reuss, F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum. 67, 2914–2923 (1996).
[CrossRef]

F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B. 50, 137–144 (1990).
[CrossRef]

Birnbaum, A. J.

Z. W. Weitz, A. J. Birnbaum, P. A. Sobotka, E. J. Zarling, J. L. Skosey, “High breath pentane concentrations during acute myocardial infarction,” Lancet 337, 933–935 (1991).
[CrossRef]

Blom, C. W. P. M.

H. S. M. de Vries, F. J. M. Harren, L. A. C. J. Voesenek, C. W. P. M. Blom, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Investigation of local ethylene emission from intact Cherry tomatoes by means of photothermal deflection and photoacoustic detection,” Plant Physiol. 107, 1371–1377 (1995).

F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B. 50, 137–144 (1990).
[CrossRef]

Bonner Denton, M.

Boogaarts, M. G. H.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Brändle, R.

W. Armstrong, R. Brändle, M. B. Jackson, “Mechanisms of flood tolerance in plants,” Acta Bot. Neerl. 43, 307–358 (1994).

L. S. Monk, R. Brändle, R. M. M. Crawford, “Catalase activity and post-anoxic injury in monocotyledonous species,” J. Exp. Bot. 38, 233–246 (1987).
[CrossRef]

Crawford, R. M. M.

L. S. Monk, R. Brändle, R. M. M. Crawford, “Catalase activity and post-anoxic injury in monocotyledonous species,” J. Exp. Bot. 38, 233–246 (1987).
[CrossRef]

de Vries, H. S. M.

H. S. M. de Vries, M. A. J. Wasono, F. J. M. Harren, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Ethylene and CO2 emission rates and pathways in harvested fruits investigated, in situ, by laser photodeflection and photoacoustic techniques,” Postharvest Biol. Technol. 8, 1–10 (1996).
[CrossRef]

H. S. M. de Vries, F. J. M. Harren, L. A. C. J. Voesenek, C. W. P. M. Blom, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Investigation of local ethylene emission from intact Cherry tomatoes by means of photothermal deflection and photoacoustic detection,” Plant Physiol. 107, 1371–1377 (1995).

Hackstein, J. H. P.

Harren, F. J. M.

F. G. C. Bijnen, F. J. M. Harren, J. H. P. Hackstein, J. Reuss, “Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O, and CO2 emission by cockroaches and scarab beetles,” Appl. Opt. 35, 5357–5368 (1996).
[CrossRef]

H. S. M. de Vries, M. A. J. Wasono, F. J. M. Harren, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Ethylene and CO2 emission rates and pathways in harvested fruits investigated, in situ, by laser photodeflection and photoacoustic techniques,” Postharvest Biol. Technol. 8, 1–10 (1996).
[CrossRef]

F. G. C. Bijnen, J. Reuss, F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum. 67, 2914–2923 (1996).
[CrossRef]

H. S. M. de Vries, F. J. M. Harren, L. A. C. J. Voesenek, C. W. P. M. Blom, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Investigation of local ethylene emission from intact Cherry tomatoes by means of photothermal deflection and photoacoustic detection,” Plant Physiol. 107, 1371–1377 (1995).

F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B. 50, 137–144 (1990).
[CrossRef]

Holleman, I.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Jackson, M. B.

W. Armstrong, R. Brändle, M. B. Jackson, “Mechanisms of flood tolerance in plants,” Acta Bot. Neerl. 43, 307–358 (1994).

Jongma, R. T.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Kimmerer, T. W.

T. W. Kimmerer, T. T. Kozlowski, “Ethylene, ethane, acetaldehyde and ethanol production by plants under stress,” Plant Physiol. 69, 840–847 (1982).
[CrossRef] [PubMed]

Kozlowski, T. T.

T. W. Kimmerer, T. T. Kozlowski, “Ethylene, ethane, acetaldehyde and ethanol production by plants under stress,” Plant Physiol. 69, 840–847 (1982).
[CrossRef] [PubMed]

Lide, D. R.

D. R. Lide, Handbook of Chemistry and Physics, 73rd ed. (CRC Press, Boca Raton, Fla., 1992), pp. 6-69–6-99.

Lioutas, T. C.

T. C. Lioutas, “Challenges of controlled and modified atmosphere packaging: a food company’s perspective,” Food Technol. 42, 78–86 (1988).

Lossing, F. P.

A. W. Tickner, F. P. Lossing, “Measurements of low vapor pressures,” J. Phys. Chem. 55, 733–738 (1951).
[CrossRef]

Meijer, G.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Meyer, P. L.

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Monk, L. S.

L. S. Monk, R. Brändle, R. M. M. Crawford, “Catalase activity and post-anoxic injury in monocotyledonous species,” J. Exp. Bot. 38, 233–246 (1987).
[CrossRef]

Morgan, P. W.

F. B. Abeles, P. W. Morgan, M. E. Saltveit, Ethylene in Plant Biology, 1st ed. (Academic, San Diego, Calif., 1992).

Perata, P.

P. Perata, A. Alpi, “Ethanol induced injuries to carrot cells, the role of acetaldehyde,” Plant Physiol. 95, 748–752 (1991).
[CrossRef]

Press, W. H.

W. H. Press, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

Reuss, J.

H. S. M. de Vries, M. A. J. Wasono, F. J. M. Harren, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Ethylene and CO2 emission rates and pathways in harvested fruits investigated, in situ, by laser photodeflection and photoacoustic techniques,” Postharvest Biol. Technol. 8, 1–10 (1996).
[CrossRef]

F. G. C. Bijnen, F. J. M. Harren, J. H. P. Hackstein, J. Reuss, “Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O, and CO2 emission by cockroaches and scarab beetles,” Appl. Opt. 35, 5357–5368 (1996).
[CrossRef]

F. G. C. Bijnen, J. Reuss, F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum. 67, 2914–2923 (1996).
[CrossRef]

H. S. M. de Vries, F. J. M. Harren, L. A. C. J. Voesenek, C. W. P. M. Blom, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Investigation of local ethylene emission from intact Cherry tomatoes by means of photothermal deflection and photoacoustic detection,” Plant Physiol. 107, 1371–1377 (1995).

F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B. 50, 137–144 (1990).
[CrossRef]

Ross, C. W.

F. B. Salisbury, C. W. Ross, Plant Physiology (Wadsworth, Belmont, Calif., 1992).

Salisbury, F. B.

F. B. Salisbury, C. W. Ross, Plant Physiology (Wadsworth, Belmont, Calif., 1992).

Saltveit, M. E.

F. B. Abeles, P. W. Morgan, M. E. Saltveit, Ethylene in Plant Biology, 1st ed. (Academic, San Diego, Calif., 1992).

Sigrist, M. W.

A. Thöny, M. W. Sigrist, “New developments in CO2 laser photoacoustic monitoring of trace gases,” Infrared Phys. Technol. 36, 585–615 (1995).
[CrossRef]

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

S. Bernegger, M. W. Sigrist, “CO laser photoacoustic spectroscopy of gases and vapors for trace gas analysis,” Infrared Phys. 30, 375–429 (1990).
[CrossRef]

M. W. Sigrist, Air Monitoring by Spectroscopic Techniques (Wiley, New York, 1994).

Skosey, J. L.

Z. W. Weitz, A. J. Birnbaum, P. A. Sobotka, E. J. Zarling, J. L. Skosey, “High breath pentane concentrations during acute myocardial infarction,” Lancet 337, 933–935 (1991).
[CrossRef]

Slanina, J.

J. Slanina, Biosphere Atmosphere Exchange of Pollutants and Trace Substances (Springer-Verlag, Berlin, 1997).
[CrossRef]

Sobotka, P. A.

Z. W. Weitz, A. J. Birnbaum, P. A. Sobotka, E. J. Zarling, J. L. Skosey, “High breath pentane concentrations during acute myocardial infarction,” Lancet 337, 933–935 (1991).
[CrossRef]

Thöny, A.

A. Thöny, M. W. Sigrist, “New developments in CO2 laser photoacoustic monitoring of trace gases,” Infrared Phys. Technol. 36, 585–615 (1995).
[CrossRef]

Tickner, A. W.

A. W. Tickner, F. P. Lossing, “Measurements of low vapor pressures,” J. Phys. Chem. 55, 733–738 (1951).
[CrossRef]

Tilden, S. B.

Urban, W.

W. Urban, in Frontiers of Laser Spectroscopy of Gases, A. C. P. Alves, J. M. Brown, M. Hollas, eds., Vol. 234 of NATO Advanced Studies Institute Series (Kluwer Academic, Dordrecht, The Netherlands, 1988), pp. 9–42.

van der Valk, H. C. P. M.

H. S. M. de Vries, M. A. J. Wasono, F. J. M. Harren, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Ethylene and CO2 emission rates and pathways in harvested fruits investigated, in situ, by laser photodeflection and photoacoustic techniques,” Postharvest Biol. Technol. 8, 1–10 (1996).
[CrossRef]

H. S. M. de Vries, F. J. M. Harren, L. A. C. J. Voesenek, C. W. P. M. Blom, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Investigation of local ethylene emission from intact Cherry tomatoes by means of photothermal deflection and photoacoustic detection,” Plant Physiol. 107, 1371–1377 (1995).

Voesenek, L. A. C. J.

H. S. M. de Vries, F. J. M. Harren, L. A. C. J. Voesenek, C. W. P. M. Blom, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Investigation of local ethylene emission from intact Cherry tomatoes by means of photothermal deflection and photoacoustic detection,” Plant Physiol. 107, 1371–1377 (1995).

F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B. 50, 137–144 (1990).
[CrossRef]

Wasono, M. A. J.

H. S. M. de Vries, M. A. J. Wasono, F. J. M. Harren, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Ethylene and CO2 emission rates and pathways in harvested fruits investigated, in situ, by laser photodeflection and photoacoustic techniques,” Postharvest Biol. Technol. 8, 1–10 (1996).
[CrossRef]

Weitz, Z. W.

Z. W. Weitz, A. J. Birnbaum, P. A. Sobotka, E. J. Zarling, J. L. Skosey, “High breath pentane concentrations during acute myocardial infarction,” Lancet 337, 933–935 (1991).
[CrossRef]

Woltering, E. J.

H. S. M. de Vries, M. A. J. Wasono, F. J. M. Harren, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Ethylene and CO2 emission rates and pathways in harvested fruits investigated, in situ, by laser photodeflection and photoacoustic techniques,” Postharvest Biol. Technol. 8, 1–10 (1996).
[CrossRef]

H. S. M. de Vries, F. J. M. Harren, L. A. C. J. Voesenek, C. W. P. M. Blom, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Investigation of local ethylene emission from intact Cherry tomatoes by means of photothermal deflection and photoacoustic detection,” Plant Physiol. 107, 1371–1377 (1995).

Zarling, E. J.

Z. W. Weitz, A. J. Birnbaum, P. A. Sobotka, E. J. Zarling, J. L. Skosey, “High breath pentane concentrations during acute myocardial infarction,” Lancet 337, 933–935 (1991).
[CrossRef]

Acta Bot. Neerl.

W. Armstrong, R. Brändle, M. B. Jackson, “Mechanisms of flood tolerance in plants,” Acta Bot. Neerl. 43, 307–358 (1994).

Appl. Opt.

Appl. Phys. B.

F. J. M. Harren, F. G. C. Bijnen, J. Reuss, L. A. C. J. Voesenek, C. W. P. M. Blom, “Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser,” Appl. Phys. B. 50, 137–144 (1990).
[CrossRef]

Appl. Spectrosc.

Food Technol.

T. C. Lioutas, “Challenges of controlled and modified atmosphere packaging: a food company’s perspective,” Food Technol. 42, 78–86 (1988).

Infrared Phys.

S. Bernegger, M. W. Sigrist, “CO laser photoacoustic spectroscopy of gases and vapors for trace gas analysis,” Infrared Phys. 30, 375–429 (1990).
[CrossRef]

Infrared Phys. Technol.

A. Thöny, M. W. Sigrist, “New developments in CO2 laser photoacoustic monitoring of trace gases,” Infrared Phys. Technol. 36, 585–615 (1995).
[CrossRef]

J. Exp. Bot.

L. S. Monk, R. Brändle, R. M. M. Crawford, “Catalase activity and post-anoxic injury in monocotyledonous species,” J. Exp. Bot. 38, 233–246 (1987).
[CrossRef]

J. Phys. Chem.

A. W. Tickner, F. P. Lossing, “Measurements of low vapor pressures,” J. Phys. Chem. 55, 733–738 (1951).
[CrossRef]

Lancet

Z. W. Weitz, A. J. Birnbaum, P. A. Sobotka, E. J. Zarling, J. L. Skosey, “High breath pentane concentrations during acute myocardial infarction,” Lancet 337, 933–935 (1991).
[CrossRef]

Plant Physiol.

T. W. Kimmerer, T. T. Kozlowski, “Ethylene, ethane, acetaldehyde and ethanol production by plants under stress,” Plant Physiol. 69, 840–847 (1982).
[CrossRef] [PubMed]

H. S. M. de Vries, F. J. M. Harren, L. A. C. J. Voesenek, C. W. P. M. Blom, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Investigation of local ethylene emission from intact Cherry tomatoes by means of photothermal deflection and photoacoustic detection,” Plant Physiol. 107, 1371–1377 (1995).

P. Perata, A. Alpi, “Ethanol induced injuries to carrot cells, the role of acetaldehyde,” Plant Physiol. 95, 748–752 (1991).
[CrossRef]

Postharvest Biol. Technol.

H. S. M. de Vries, M. A. J. Wasono, F. J. M. Harren, E. J. Woltering, H. C. P. M. van der Valk, J. Reuss, “Ethylene and CO2 emission rates and pathways in harvested fruits investigated, in situ, by laser photodeflection and photoacoustic techniques,” Postharvest Biol. Technol. 8, 1–10 (1996).
[CrossRef]

Rev. Sci. Instrum.

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

F. G. C. Bijnen, J. Reuss, F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum. 67, 2914–2923 (1996).
[CrossRef]

Other

W. Urban, in Frontiers of Laser Spectroscopy of Gases, A. C. P. Alves, J. M. Brown, M. Hollas, eds., Vol. 234 of NATO Advanced Studies Institute Series (Kluwer Academic, Dordrecht, The Netherlands, 1988), pp. 9–42.

F. B. Abeles, P. W. Morgan, M. E. Saltveit, Ethylene in Plant Biology, 1st ed. (Academic, San Diego, Calif., 1992).

W. H. Press, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).

D. R. Lide, Handbook of Chemistry and Physics, 73rd ed. (CRC Press, Boca Raton, Fla., 1992), pp. 6-69–6-99.

J. Slanina, Biosphere Atmosphere Exchange of Pollutants and Trace Substances (Springer-Verlag, Berlin, 1997).
[CrossRef]

M. W. Sigrist, Air Monitoring by Spectroscopic Techniques (Wiley, New York, 1994).

F. B. Salisbury, C. W. Ross, Plant Physiology (Wadsworth, Belmont, Calif., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Detection setup: 1, 2, and 3, trace-gas flows; 4, triple photoacoustic cell; 5, liquid-nitrogen-cooled CO laser; 6, grating to select the appropriate transition; 7, chopper; 8, catalyst to remove hydrocarbons; 9, KOH scrubber to remove CO2; 10, switching valve for (an)aerobic conditions; 11, cuvettes, one containing a tomato, the other empty as a reference; 12, switching valve to select the cuvette; 13, cooling trap.

Fig. 2
Fig. 2

Cooling trap: 1, entrance of trace gases; 2, water-vapor deposit tubes; 3, 4, and 5, aluminum plates (5 mm thick) at temperatures of 255, 200, and 150 K; 6, brass plate (20 mm thick) kept at 100 K; 7, outlet of trace gases toward the triple photoacoustic cell; 8, Teflon jacket to avoid temperature changes at the aluminum plates during refilling caused by evaporating cold N2 vapor; 9, Dewar (200-mm inner diameter, 700-mm height); 10, aluminum block at liquid-N2 temperature; 11, thermally isolated connection between the block and the brass plate to keep a constant temperature gradient; 12, liquid-N2 reservoir.

Fig. 3
Fig. 3

Aerobic-to-anaerobic transition. At 0 h, three cherry tomatoes were placed in a cuvette with 80% N2 + 20% O2 flow; at 3 h, O2 flow was switched from the entrance to the exit port of the cuvette, resulting in anaerobic conditions. We obtained each data point shown by subtracting the respective gas concentration calculated for the empty cuvette from that for the tomato cuvette.

Fig. 4
Fig. 4

Anaerobic-to-aerobic transition for a different experiment compared with Fig. 3. At 0 h, anaerobic conditions were established in a cuvette with three fresh cherry tomatoes; at 10.2 h, aerobic conditions were reinstalled.

Tables (2)

Tables Icon

Table 1 Selected CO Laser Lines and Absorption Coefficients for Several Gases

Tables Icon

Table 2 Partial Vapor Pressures for Several Gases at Given Temperatures

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

α l = g = 1 G   lg × c g ,
α = Σ · c .
c = Ψ · Ψ - 1 · Ψ t · l ,
Ψ ij = Σ ij / α i ,     l i = 1 .
c = Ψ t · Ψ - 1 · Ψ t · β ,
Ψ ij = Σ ij / Δ α i ,     β i = α i / Δ α i .
Δ c k 2 = i = 1 G Δ c i 0 k 2 + i = 1 , j = 1 G , L Δ c ij k 2 .
Δ c i 0 k = B ki ,     B = Ψ t · Ψ - 1 · Ψ t .
Δ c ij k = A - 1 kj · β ˜ i - β i - B ki · c j · Δ Ψ i , j ,
A = Ψ t · Ψ ,   Δ Ψ ij = Δ   Σ ij / Δ α i ,   β ˜ i = α ˜ i / Δ α i .
Σ = U · W · V t ,
i = 1 L   U ik U in = δ kn   for   1 k ,   n G , j = 1 G   V jk V jn = δ kn   for   1 k ,   n G , w ij = w i   if   i = j , or   w ij = 0   otherwise .
B = V · W - 1 · U t ,
W - 1 ij = 1 W ii if   i = j ,   W - 1 ij = 0   otherwise , A - 1 jk = i = 1 G V ji V ki w i 2 .
W - 1 ii = 0   if   W ii   threshold , W - 1 ii = 1 / w ii ,   otherwise ,
threshold = × maximum   value   of   w jj | i = 1 G , = machine accuracy .

Metrics