Abstract

As far as we know this is the first report on picosecond green-light generation from an actively mode-locked diode-pumped self-doubling neodymium yttrium aluminum borate (NYAB) laser. The pulse width is approximately 100 ps and is limited by imperfect antireflection coating and the intracavity doubling effect. The green average output power of this laser for mode-locked operation was more than 12 times higher than that for the continuous wave NYAB laser. The polarization state of the laser can be switched from ordinary to extraordinary rays by displacement of the pump spot. The polarization ratio can be better than 200 without any intracavity polarization element.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Lin, “Double jeopardy: the blue-green race’s new players,” Laser Optron. 9, 34–40 (1990).
  2. T. E. Dimmick, “Semiconductor-laser-pumped, mode-locked, and frequency-doubled Nd:YAG laser,” Opt. Lett. 13, 677–679 (1989).
    [CrossRef]
  3. L. R. Marshll, A. Kaz, A. D. Hays, R. L. Burnham, “3W continuous-wave diode-pumped 532-nm laser,” Opt. Lett. 17, 1110–1112 (1992).
    [CrossRef]
  4. T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 3, 140–147 (1986).
    [CrossRef]
  5. S. C. Wang, R. E. Stone, J. T. Lin, “Characteristics of neodymium yttrium aluminum borate as a diode pumped laser material,” in Advanced Solid State Lasers, H. P. Jenssen, G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 23–25.
  6. R. E. Stone, R. C. Spitzer, S. C. Wang, “A Q-switched diode-pumped neodymium yttrium aluminum borate laser,” IEEE Photon. Technol. Lett. 2, 769–771 (1990).
    [CrossRef]
  7. J. Bartschke, I. V. Klimov, K.-J. Boller, R. Wallenstein, “Passively Q-switched UV Nd:YAB laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 465–466.
  8. M.-Y. Hwang, J. T. Lin, “Temperature dependence of second harmonic generation in NYAB crystals,” Opt. Commun. 95, 103–108 (1993).
    [CrossRef]
  9. T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1–xAl3(BO3)4(NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
    [CrossRef]
  10. Y. F. Chen, S. C. Wang, C. F. Kao, T. M. Huang, “Investigation of fiber-coupled laser-diode-pumped NYAB green laser performance,” IEEE Photon. Technol. Lett. 8, 1313–1315 (1996).
    [CrossRef]
  11. J. Falk, “A theory of the mode-locked, internally frequency-doubled laser,” IEEE J. Quantum Electron. QE-11, 21–31 (1975).
    [CrossRef]
  12. T. Y. Fan, R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–911 (1988).
    [CrossRef]

1996 (1)

Y. F. Chen, S. C. Wang, C. F. Kao, T. M. Huang, “Investigation of fiber-coupled laser-diode-pumped NYAB green laser performance,” IEEE Photon. Technol. Lett. 8, 1313–1315 (1996).
[CrossRef]

1995 (1)

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1–xAl3(BO3)4(NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
[CrossRef]

1993 (1)

M.-Y. Hwang, J. T. Lin, “Temperature dependence of second harmonic generation in NYAB crystals,” Opt. Commun. 95, 103–108 (1993).
[CrossRef]

1992 (1)

1990 (2)

J. T. Lin, “Double jeopardy: the blue-green race’s new players,” Laser Optron. 9, 34–40 (1990).

R. E. Stone, R. C. Spitzer, S. C. Wang, “A Q-switched diode-pumped neodymium yttrium aluminum borate laser,” IEEE Photon. Technol. Lett. 2, 769–771 (1990).
[CrossRef]

1989 (1)

T. E. Dimmick, “Semiconductor-laser-pumped, mode-locked, and frequency-doubled Nd:YAG laser,” Opt. Lett. 13, 677–679 (1989).
[CrossRef]

1988 (1)

T. Y. Fan, R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–911 (1988).
[CrossRef]

1986 (1)

1975 (1)

J. Falk, “A theory of the mode-locked, internally frequency-doubled laser,” IEEE J. Quantum Electron. QE-11, 21–31 (1975).
[CrossRef]

Bartschke, J.

J. Bartschke, I. V. Klimov, K.-J. Boller, R. Wallenstein, “Passively Q-switched UV Nd:YAB laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 465–466.

Boller, K.-J.

J. Bartschke, I. V. Klimov, K.-J. Boller, R. Wallenstein, “Passively Q-switched UV Nd:YAB laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 465–466.

Burnham, R. L.

Byer, R. L.

Chen, Y. F.

Y. F. Chen, S. C. Wang, C. F. Kao, T. M. Huang, “Investigation of fiber-coupled laser-diode-pumped NYAB green laser performance,” IEEE Photon. Technol. Lett. 8, 1313–1315 (1996).
[CrossRef]

Cordova-Plaza, A.

Digonnet, M. J. F.

Dimmick, T. E.

T. E. Dimmick, “Semiconductor-laser-pumped, mode-locked, and frequency-doubled Nd:YAG laser,” Opt. Lett. 13, 677–679 (1989).
[CrossRef]

Falk, J.

J. Falk, “A theory of the mode-locked, internally frequency-doubled laser,” IEEE J. Quantum Electron. QE-11, 21–31 (1975).
[CrossRef]

Fan, T. Y.

Hasegawa, A.

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1–xAl3(BO3)4(NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
[CrossRef]

Hays, A. D.

Huang, T. M.

Y. F. Chen, S. C. Wang, C. F. Kao, T. M. Huang, “Investigation of fiber-coupled laser-diode-pumped NYAB green laser performance,” IEEE Photon. Technol. Lett. 8, 1313–1315 (1996).
[CrossRef]

Hwang, M.-Y.

M.-Y. Hwang, J. T. Lin, “Temperature dependence of second harmonic generation in NYAB crystals,” Opt. Commun. 95, 103–108 (1993).
[CrossRef]

Kao, C. F.

Y. F. Chen, S. C. Wang, C. F. Kao, T. M. Huang, “Investigation of fiber-coupled laser-diode-pumped NYAB green laser performance,” IEEE Photon. Technol. Lett. 8, 1313–1315 (1996).
[CrossRef]

Kato, Y.

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1–xAl3(BO3)4(NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
[CrossRef]

Kaz, A.

Klimov, I. V.

J. Bartschke, I. V. Klimov, K.-J. Boller, R. Wallenstein, “Passively Q-switched UV Nd:YAB laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 465–466.

Lin, J. T.

M.-Y. Hwang, J. T. Lin, “Temperature dependence of second harmonic generation in NYAB crystals,” Opt. Commun. 95, 103–108 (1993).
[CrossRef]

J. T. Lin, “Double jeopardy: the blue-green race’s new players,” Laser Optron. 9, 34–40 (1990).

S. C. Wang, R. E. Stone, J. T. Lin, “Characteristics of neodymium yttrium aluminum borate as a diode pumped laser material,” in Advanced Solid State Lasers, H. P. Jenssen, G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 23–25.

Marshll, L. R.

Ogura, I.

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1–xAl3(BO3)4(NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
[CrossRef]

Omatsu, T.

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1–xAl3(BO3)4(NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
[CrossRef]

Shaw, H. J.

Shimosegawa, M.

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1–xAl3(BO3)4(NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
[CrossRef]

Spitzer, R. C.

R. E. Stone, R. C. Spitzer, S. C. Wang, “A Q-switched diode-pumped neodymium yttrium aluminum borate laser,” IEEE Photon. Technol. Lett. 2, 769–771 (1990).
[CrossRef]

Stone, R. E.

R. E. Stone, R. C. Spitzer, S. C. Wang, “A Q-switched diode-pumped neodymium yttrium aluminum borate laser,” IEEE Photon. Technol. Lett. 2, 769–771 (1990).
[CrossRef]

S. C. Wang, R. E. Stone, J. T. Lin, “Characteristics of neodymium yttrium aluminum borate as a diode pumped laser material,” in Advanced Solid State Lasers, H. P. Jenssen, G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 23–25.

Wallenstein, R.

J. Bartschke, I. V. Klimov, K.-J. Boller, R. Wallenstein, “Passively Q-switched UV Nd:YAB laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 465–466.

Wang, S. C.

Y. F. Chen, S. C. Wang, C. F. Kao, T. M. Huang, “Investigation of fiber-coupled laser-diode-pumped NYAB green laser performance,” IEEE Photon. Technol. Lett. 8, 1313–1315 (1996).
[CrossRef]

R. E. Stone, R. C. Spitzer, S. C. Wang, “A Q-switched diode-pumped neodymium yttrium aluminum borate laser,” IEEE Photon. Technol. Lett. 2, 769–771 (1990).
[CrossRef]

S. C. Wang, R. E. Stone, J. T. Lin, “Characteristics of neodymium yttrium aluminum borate as a diode pumped laser material,” in Advanced Solid State Lasers, H. P. Jenssen, G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 23–25.

IEEE J. Quantum Electron. (2)

J. Falk, “A theory of the mode-locked, internally frequency-doubled laser,” IEEE J. Quantum Electron. QE-11, 21–31 (1975).
[CrossRef]

T. Y. Fan, R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–911 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. F. Chen, S. C. Wang, C. F. Kao, T. M. Huang, “Investigation of fiber-coupled laser-diode-pumped NYAB green laser performance,” IEEE Photon. Technol. Lett. 8, 1313–1315 (1996).
[CrossRef]

R. E. Stone, R. C. Spitzer, S. C. Wang, “A Q-switched diode-pumped neodymium yttrium aluminum borate laser,” IEEE Photon. Technol. Lett. 2, 769–771 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Optron. (1)

J. T. Lin, “Double jeopardy: the blue-green race’s new players,” Laser Optron. 9, 34–40 (1990).

Opt. Commun. (2)

M.-Y. Hwang, J. T. Lin, “Temperature dependence of second harmonic generation in NYAB crystals,” Opt. Commun. 95, 103–108 (1993).
[CrossRef]

T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1–xAl3(BO3)4(NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).
[CrossRef]

Opt. Lett. (2)

T. E. Dimmick, “Semiconductor-laser-pumped, mode-locked, and frequency-doubled Nd:YAG laser,” Opt. Lett. 13, 677–679 (1989).
[CrossRef]

L. R. Marshll, A. Kaz, A. D. Hays, R. L. Burnham, “3W continuous-wave diode-pumped 532-nm laser,” Opt. Lett. 17, 1110–1112 (1992).
[CrossRef]

Other (2)

S. C. Wang, R. E. Stone, J. T. Lin, “Characteristics of neodymium yttrium aluminum borate as a diode pumped laser material,” in Advanced Solid State Lasers, H. P. Jenssen, G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 23–25.

J. Bartschke, I. V. Klimov, K.-J. Boller, R. Wallenstein, “Passively Q-switched UV Nd:YAB laser,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 465–466.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Laser configuration.

Fig. 2
Fig. 2

(a) Average cw and mode-locked green output of the NYAB laser as a function of pump power. The ratio of mode locked to cw green output is also shown. (b) Second-harmonic conversion efficiency as a function of pump power.

Fig. 3
Fig. 3

Autocorrelation trace of a laser pulse at 1.06 μm.

Fig. 4
Fig. 4

Output spectrum of (a) fundamental output and (b) second-harmonic output of the laser for mode-locked operation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ p = 2 ln   2 π Δ f α 2   g 0 2 + 4 δ f m 2 g 0 Δ f 2 1 / 2 - α 2   g 0 - 1 / 2 ,

Metrics