Abstract

By use of the reflection of an uncoated external etalon, a diode-pumped thulium-doped YAG microchip laser was forced into a single-frequency mode. The wavelength of the single-frequency radiation was tunable over 15 nm simply by translation of the etalon relative to the laser. Output powers of 45 mW were achieved in a monolithic setup that is insensitive to vibrations. The origin of the single-frequency oscillation is the wavelength-dependent reflection of the etalon, which is coupled back into the laser resonator. This method permits the combination of inherently stable, single-frequency resonator geometries such as microchips with laser materials that have broad tuning ranges.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kane, R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
    [CrossRef] [PubMed]
  2. T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and diode laser pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–932 (1988).
    [CrossRef]
  3. R. C. Stoneman, L. Esterowitz, “Efficient, broadly tunable, laser pumped Tm:YAG and Tm:YSGG CW-lasers,” Opt. Lett. 15, 486–488 (1990).
    [CrossRef] [PubMed]
  4. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993), and references therein.
    [CrossRef]
  5. J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26, 2052–2057 (1990).
    [CrossRef]
  6. K. Otsuka, “Nonlinear phenomena in semiconductor lasers,” in Nonlinear Optics and Materials, C. D. Cantrell, C. M. Bowden, eds., Proc. SPIE1497, 432–442 (1991), and references therein.
    [CrossRef]
  7. K. Otsuka, “Highly sensitive measurements of Doppler-shift with a microchip solid-state laser,” Jpn. J. Appl. Phys. 31, L1546–L1468 (1992).
    [CrossRef]
  8. R. Clausen, G. Huber, “Storage capacity and ground state bleaching in 2-micron Tm- and Ho-lasers,” in Proceedings of the 18th International Quantum Electronics Conference, Vol. 9 of 1992 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 336–338.

1993 (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993), and references therein.
[CrossRef]

1992 (1)

K. Otsuka, “Highly sensitive measurements of Doppler-shift with a microchip solid-state laser,” Jpn. J. Appl. Phys. 31, L1546–L1468 (1992).
[CrossRef]

1990 (2)

J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26, 2052–2057 (1990).
[CrossRef]

R. C. Stoneman, L. Esterowitz, “Efficient, broadly tunable, laser pumped Tm:YAG and Tm:YSGG CW-lasers,” Opt. Lett. 15, 486–488 (1990).
[CrossRef] [PubMed]

1988 (1)

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and diode laser pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–932 (1988).
[CrossRef]

1985 (1)

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993), and references therein.
[CrossRef]

Byer, R. L.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and diode laser pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–932 (1988).
[CrossRef]

T. J. Kane, R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
[CrossRef] [PubMed]

Clausen, R.

R. Clausen, G. Huber, “Storage capacity and ground state bleaching in 2-micron Tm- and Ho-lasers,” in Proceedings of the 18th International Quantum Electronics Conference, Vol. 9 of 1992 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 336–338.

Esterowitz, L.

Fan, T. Y.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and diode laser pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–932 (1988).
[CrossRef]

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993), and references therein.
[CrossRef]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993), and references therein.
[CrossRef]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993), and references therein.
[CrossRef]

Huber, G.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and diode laser pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–932 (1988).
[CrossRef]

R. Clausen, G. Huber, “Storage capacity and ground state bleaching in 2-micron Tm- and Ho-lasers,” in Proceedings of the 18th International Quantum Electronics Conference, Vol. 9 of 1992 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 336–338.

Kane, T. J.

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993), and references therein.
[CrossRef]

Mitzscherlich, P.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and diode laser pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–932 (1988).
[CrossRef]

Otsuka, K.

K. Otsuka, “Highly sensitive measurements of Doppler-shift with a microchip solid-state laser,” Jpn. J. Appl. Phys. 31, L1546–L1468 (1992).
[CrossRef]

K. Otsuka, “Nonlinear phenomena in semiconductor lasers,” in Nonlinear Optics and Materials, C. D. Cantrell, C. M. Bowden, eds., Proc. SPIE1497, 432–442 (1991), and references therein.
[CrossRef]

Stoneman, R. C.

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993), and references therein.
[CrossRef]

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993), and references therein.
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26, 2052–2057 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26, 2052–2057 (1990).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and diode laser pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–932 (1988).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993), and references therein.
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Otsuka, “Highly sensitive measurements of Doppler-shift with a microchip solid-state laser,” Jpn. J. Appl. Phys. 31, L1546–L1468 (1992).
[CrossRef]

Opt. Lett. (2)

Other (2)

R. Clausen, G. Huber, “Storage capacity and ground state bleaching in 2-micron Tm- and Ho-lasers,” in Proceedings of the 18th International Quantum Electronics Conference, Vol. 9 of 1992 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 336–338.

K. Otsuka, “Nonlinear phenomena in semiconductor lasers,” in Nonlinear Optics and Materials, C. D. Cantrell, C. M. Bowden, eds., Proc. SPIE1497, 432–442 (1991), and references therein.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup: H, heat sink; C, 10% Tm:YAG-crystal; E, quartz etalon 90 μm long; FI, Faraday isolator (isolation, >30 dB); BS, beam splitter; SP, 0.25-m spectrometer or IR camera; FPI, scanning Fabry–Perot interferometer.

Fig. 2
Fig. 2

Free-running (multimode) performance of the Tm:YAG microchip at room temperature. η P in , η P abs , slope efficiencies (least-squares fits) of the free-running microchip, related to incident and absorbed pump power.

Fig. 3
Fig. 3

(a) Calculated spectral reflectivity of an uncoated 90-μm quartz etalon at normal incidence. (b) Variation of the spectral transmission with the tilt angle for λ = 2011, 2013, 2013.5, 2015 nm.

Fig. 4
Fig. 4

(a) Tm:YAG microchip laser without feedback at 1.4-W pump power. Five modes oscillate; output is 135 mW. (b) Single-frequency output (65 mW) at 1.4-W pump power.

Fig. 5
Fig. 5

Fabry–Perot interferometer scan of two-wavelength (2013 and 2028 nm) oscillation.

Fig. 6
Fig. 6

Stable setup for the feedback coupled microchip laser: L, focusing lens (f = 30 mm); H, heat sink; C, microchip laser; P, piezo tube (2 mm long); E, étalon.

Fig. 7
Fig. 7

Linewidth of the Tm:YAG microchip laser, limited by instrumental resolution.

Fig. 8
Fig. 8

Tunable Tm microchip laser.

Metrics