Abstract

To continue our earlier research on the photon-echo novelty filter, we lengthen the novelty filter’s response time by 3 orders of magnitude from nanoseconds to microseconds. On the microsecond time scale of airborne turbulence we demonstrate the potential of the novelty filter as a unique time-differential phase sensor. We observe no considerable degradation of the filter’s sensitivity and accuracy to as high as 50 and 200 μs, respectively. This result demonstrates that the filter can be continuously tuned with regard to its response time over a wide range. We further apply the novelty filter to the probing of phase distortions of a laser beam going through a He jet. We also investigate issues regarding the operation of the novelty filter to deal with random and spatially nonuniform phase distortion. The relation of the photon-echo novelty filter to traditional double-exposure holography and the role of the time-differential sensor in adaptive optics are discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. G. Gilbert, L. J. Otten, eds., Aero-Optical Phenomena, Vol. 80 of Progress in Astronautics and Aeronautics (American Institute of Aeronautics and Astronautics, New York, 1982), pp. 1–9.
  2. L. A. Thompson, “Adaptive optics in astronomy,” Phys. Today 47, 24–31 (1994).
    [CrossRef]
  3. R. Q. Fugate, B. L. Ellerbroek, C. H. Higgins, M. P. Jelonek, W. J. Lange, A. C. Slavin, W. J. Wild, D. M. Winker, J. M. Wynia, J. M. Spinhirne, B. R. Boeke, R. E. Ruane, J. F. Moroney, M. D. Oliker, D. W. Swindle, R. A. Cleis, “Two generations of laser-guide-star adaptive-optics experiments at the Starfire optical range,” J. Opt. Soc. Am. A 11, 310–324 (1994).
    [CrossRef]
  4. J. E. Craig, W. C. Rose, “The optics of aircraft shear flows,” AIAA paper 85-0557, presented at the Shear Flow Control Conference, March 1985 (American Institute of Aeronautics and Astronautics, New York, 1994).
  5. M. C. Roggemann, B. M. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 437–505 (1997).
    [CrossRef]
  6. W. C. Rose, “Nearfield aerodynamics and optical propagation characteristics of a large-scale turret model,” AFWL Rep. No. TR-81-28 (Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, 1982).
  7. R. K. Tyson, Principles of Adaptive Optics (Academic, Boston, 1991), p. 36.
  8. Y. Zhang, R. Kachru, “Photon-echo novelty filter for measuring a sudden change in index of refraction,” Appl. Opt. 35, 6762–6766 (1996).
    [CrossRef] [PubMed]
  9. D. Z. Anderson, J. Feinberg, “Optical novelty filter,” IEEE J. Quantum Electron. 25, 635–647 (1989).
    [CrossRef]
  10. D. Z. Anderson, D. M. Lininger, J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
    [CrossRef] [PubMed]
  11. J. Khoury, C. L. Woods, M. Cronin-Golomb, “Photorefractive holographic interference novelty filter,” Opt. Commun. 82, 533–538 (1991).
    [CrossRef]
  12. F. T. S. Yu, S. Wu, S. Rajan, A. Mayers, D. A. Gregory, “Optical novelty filter with phase carrier,” Opt. Commun. 92, 205–208 (1992).
    [CrossRef]
  13. G. Yang, A. Siahmakoun, “Time-delay Fizeau phase-conjugate interferometer,” Appl. Opt. 32, 1578–1582 (1993).
    [CrossRef] [PubMed]
  14. V. V. Shkunov, B. Y. Zel’dovich, “Optical phase conjugation,” Sci. Am. 253(6), 54–59 (1985).
    [CrossRef]
  15. D. M. Bloom, P. F. Liao, N. P. Economou, “Observation of amplified reflection by degenerate four-wave mixing in atomic sodium vapor,” Opt. Lett. 2, 58–60 (1978).
    [CrossRef] [PubMed]
  16. S. H. Lee, ed., Optical Information Processing, Fundamentals (Springer-Verlag, Berlin, 1981), pp. 150–151.
  17. P. F. Liao, D. M. Bloom, “Continuous-wave backward-wave generation by degenerate four-wave mixing in ruby,” Opt. Lett. 3, 4–6 (1978).
    [CrossRef] [PubMed]
  18. M. K. Kim, R. Kachru, “Multiple-bit long-term data storage by backward-stimulated echo in Eu3+:YAlO3,” Opt. Lett. 14, 423–425 (1989).
    [CrossRef] [PubMed]
  19. T. W. Mossberg, “Time-domain frequency-selective optical data storage,” Opt. Lett. 7, 77–79 (1982).
    [CrossRef] [PubMed]
  20. R. W. Equall, Y. Sun, R. L. Cone, R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994).
    [CrossRef] [PubMed]
  21. R. W. Equall, R. L. Cone, R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
    [CrossRef]
  22. A. Yariv, Quantum Electronics (Wiley, New York, 1975), pp. 334–335.
  23. L. McMackin, B. Masson, N. Clark, K. Bishop, R. Pierson, E. Chen, “Hartmann wave front sensor studies of dynamic organized structure in flow fields,” AIAA J. 33, 2158–2164 (1995).
    [CrossRef]
  24. G. Birkhoff, E. H. Zarantonello, Jets, Wakes, and Cavities (Academic, New York, 1957), pp. 294–295.
  25. H. M. Smith, Principles of Holography (Wiley, New York, 1975), pp. 227–231.
  26. H. J. Caufield, Handbook of Optical Holography (Academic, San Diego, Calif., 1979), pp. 491–493.

1997

M. C. Roggemann, B. M. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 437–505 (1997).
[CrossRef]

1996

1995

R. W. Equall, R. L. Cone, R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

L. McMackin, B. Masson, N. Clark, K. Bishop, R. Pierson, E. Chen, “Hartmann wave front sensor studies of dynamic organized structure in flow fields,” AIAA J. 33, 2158–2164 (1995).
[CrossRef]

1994

1993

1992

F. T. S. Yu, S. Wu, S. Rajan, A. Mayers, D. A. Gregory, “Optical novelty filter with phase carrier,” Opt. Commun. 92, 205–208 (1992).
[CrossRef]

1991

J. Khoury, C. L. Woods, M. Cronin-Golomb, “Photorefractive holographic interference novelty filter,” Opt. Commun. 82, 533–538 (1991).
[CrossRef]

1989

1987

1985

V. V. Shkunov, B. Y. Zel’dovich, “Optical phase conjugation,” Sci. Am. 253(6), 54–59 (1985).
[CrossRef]

1982

1978

Anderson, D. Z.

D. Z. Anderson, J. Feinberg, “Optical novelty filter,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

D. Z. Anderson, D. M. Lininger, J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
[CrossRef] [PubMed]

Birkhoff, G.

G. Birkhoff, E. H. Zarantonello, Jets, Wakes, and Cavities (Academic, New York, 1957), pp. 294–295.

Bishop, K.

L. McMackin, B. Masson, N. Clark, K. Bishop, R. Pierson, E. Chen, “Hartmann wave front sensor studies of dynamic organized structure in flow fields,” AIAA J. 33, 2158–2164 (1995).
[CrossRef]

Bloom, D. M.

Boeke, B. R.

Caufield, H. J.

H. J. Caufield, Handbook of Optical Holography (Academic, San Diego, Calif., 1979), pp. 491–493.

Chen, E.

L. McMackin, B. Masson, N. Clark, K. Bishop, R. Pierson, E. Chen, “Hartmann wave front sensor studies of dynamic organized structure in flow fields,” AIAA J. 33, 2158–2164 (1995).
[CrossRef]

Clark, N.

L. McMackin, B. Masson, N. Clark, K. Bishop, R. Pierson, E. Chen, “Hartmann wave front sensor studies of dynamic organized structure in flow fields,” AIAA J. 33, 2158–2164 (1995).
[CrossRef]

Cleis, R. A.

Cone, R. L.

R. W. Equall, R. L. Cone, R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

R. W. Equall, Y. Sun, R. L. Cone, R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994).
[CrossRef] [PubMed]

Craig, J. E.

J. E. Craig, W. C. Rose, “The optics of aircraft shear flows,” AIAA paper 85-0557, presented at the Shear Flow Control Conference, March 1985 (American Institute of Aeronautics and Astronautics, New York, 1994).

Cronin-Golomb, M.

J. Khoury, C. L. Woods, M. Cronin-Golomb, “Photorefractive holographic interference novelty filter,” Opt. Commun. 82, 533–538 (1991).
[CrossRef]

Economou, N. P.

Ellerbroek, B. L.

Equall, R. W.

R. W. Equall, R. L. Cone, R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

R. W. Equall, Y. Sun, R. L. Cone, R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994).
[CrossRef] [PubMed]

Feinberg, J.

D. Z. Anderson, J. Feinberg, “Optical novelty filter,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

D. Z. Anderson, D. M. Lininger, J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
[CrossRef] [PubMed]

Fugate, R. Q.

Gregory, D. A.

F. T. S. Yu, S. Wu, S. Rajan, A. Mayers, D. A. Gregory, “Optical novelty filter with phase carrier,” Opt. Commun. 92, 205–208 (1992).
[CrossRef]

Higgins, C. H.

Jelonek, M. P.

Kachru, R.

Khoury, J.

J. Khoury, C. L. Woods, M. Cronin-Golomb, “Photorefractive holographic interference novelty filter,” Opt. Commun. 82, 533–538 (1991).
[CrossRef]

Kim, M. K.

Lange, W. J.

Liao, P. F.

Lininger, D. M.

Macfarlane, R. M.

R. W. Equall, R. L. Cone, R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

R. W. Equall, Y. Sun, R. L. Cone, R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994).
[CrossRef] [PubMed]

Masson, B.

L. McMackin, B. Masson, N. Clark, K. Bishop, R. Pierson, E. Chen, “Hartmann wave front sensor studies of dynamic organized structure in flow fields,” AIAA J. 33, 2158–2164 (1995).
[CrossRef]

Mayers, A.

F. T. S. Yu, S. Wu, S. Rajan, A. Mayers, D. A. Gregory, “Optical novelty filter with phase carrier,” Opt. Commun. 92, 205–208 (1992).
[CrossRef]

McMackin, L.

L. McMackin, B. Masson, N. Clark, K. Bishop, R. Pierson, E. Chen, “Hartmann wave front sensor studies of dynamic organized structure in flow fields,” AIAA J. 33, 2158–2164 (1995).
[CrossRef]

Moroney, J. F.

Mossberg, T. W.

Oliker, M. D.

Pierson, R.

L. McMackin, B. Masson, N. Clark, K. Bishop, R. Pierson, E. Chen, “Hartmann wave front sensor studies of dynamic organized structure in flow fields,” AIAA J. 33, 2158–2164 (1995).
[CrossRef]

Rajan, S.

F. T. S. Yu, S. Wu, S. Rajan, A. Mayers, D. A. Gregory, “Optical novelty filter with phase carrier,” Opt. Commun. 92, 205–208 (1992).
[CrossRef]

Roggemann, M. C.

M. C. Roggemann, B. M. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 437–505 (1997).
[CrossRef]

Rose, W. C.

W. C. Rose, “Nearfield aerodynamics and optical propagation characteristics of a large-scale turret model,” AFWL Rep. No. TR-81-28 (Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, 1982).

J. E. Craig, W. C. Rose, “The optics of aircraft shear flows,” AIAA paper 85-0557, presented at the Shear Flow Control Conference, March 1985 (American Institute of Aeronautics and Astronautics, New York, 1994).

Ruane, R. E.

Shkunov, V. V.

V. V. Shkunov, B. Y. Zel’dovich, “Optical phase conjugation,” Sci. Am. 253(6), 54–59 (1985).
[CrossRef]

Siahmakoun, A.

Slavin, A. C.

Smith, H. M.

H. M. Smith, Principles of Holography (Wiley, New York, 1975), pp. 227–231.

Spinhirne, J. M.

Sun, Y.

R. W. Equall, Y. Sun, R. L. Cone, R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994).
[CrossRef] [PubMed]

Swindle, D. W.

Thompson, L. A.

L. A. Thompson, “Adaptive optics in astronomy,” Phys. Today 47, 24–31 (1994).
[CrossRef]

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics (Academic, Boston, 1991), p. 36.

Welsh, B. M.

M. C. Roggemann, B. M. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 437–505 (1997).
[CrossRef]

Wild, W. J.

Winker, D. M.

Woods, C. L.

J. Khoury, C. L. Woods, M. Cronin-Golomb, “Photorefractive holographic interference novelty filter,” Opt. Commun. 82, 533–538 (1991).
[CrossRef]

Wu, S.

F. T. S. Yu, S. Wu, S. Rajan, A. Mayers, D. A. Gregory, “Optical novelty filter with phase carrier,” Opt. Commun. 92, 205–208 (1992).
[CrossRef]

Wynia, J. M.

Yang, G.

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1975), pp. 334–335.

Yu, F. T. S.

F. T. S. Yu, S. Wu, S. Rajan, A. Mayers, D. A. Gregory, “Optical novelty filter with phase carrier,” Opt. Commun. 92, 205–208 (1992).
[CrossRef]

Zarantonello, E. H.

G. Birkhoff, E. H. Zarantonello, Jets, Wakes, and Cavities (Academic, New York, 1957), pp. 294–295.

Zel’dovich, B. Y.

V. V. Shkunov, B. Y. Zel’dovich, “Optical phase conjugation,” Sci. Am. 253(6), 54–59 (1985).
[CrossRef]

Zhang, Y.

AIAA J.

L. McMackin, B. Masson, N. Clark, K. Bishop, R. Pierson, E. Chen, “Hartmann wave front sensor studies of dynamic organized structure in flow fields,” AIAA J. 33, 2158–2164 (1995).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

D. Z. Anderson, J. Feinberg, “Optical novelty filter,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

J. Khoury, C. L. Woods, M. Cronin-Golomb, “Photorefractive holographic interference novelty filter,” Opt. Commun. 82, 533–538 (1991).
[CrossRef]

F. T. S. Yu, S. Wu, S. Rajan, A. Mayers, D. A. Gregory, “Optical novelty filter with phase carrier,” Opt. Commun. 92, 205–208 (1992).
[CrossRef]

Opt. Lett.

Phys. Rev. B

R. W. Equall, R. L. Cone, R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B 52, 3963–3969 (1995).
[CrossRef]

Phys. Rev. Lett.

R. W. Equall, Y. Sun, R. L. Cone, R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,” Phys. Rev. Lett. 72, 2179–2182 (1994).
[CrossRef] [PubMed]

Phys. Today

L. A. Thompson, “Adaptive optics in astronomy,” Phys. Today 47, 24–31 (1994).
[CrossRef]

Rev. Mod. Phys.

M. C. Roggemann, B. M. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 437–505 (1997).
[CrossRef]

Sci. Am.

V. V. Shkunov, B. Y. Zel’dovich, “Optical phase conjugation,” Sci. Am. 253(6), 54–59 (1985).
[CrossRef]

Other

W. C. Rose, “Nearfield aerodynamics and optical propagation characteristics of a large-scale turret model,” AFWL Rep. No. TR-81-28 (Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, 1982).

R. K. Tyson, Principles of Adaptive Optics (Academic, Boston, 1991), p. 36.

K. G. Gilbert, L. J. Otten, eds., Aero-Optical Phenomena, Vol. 80 of Progress in Astronautics and Aeronautics (American Institute of Aeronautics and Astronautics, New York, 1982), pp. 1–9.

J. E. Craig, W. C. Rose, “The optics of aircraft shear flows,” AIAA paper 85-0557, presented at the Shear Flow Control Conference, March 1985 (American Institute of Aeronautics and Astronautics, New York, 1994).

A. Yariv, Quantum Electronics (Wiley, New York, 1975), pp. 334–335.

G. Birkhoff, E. H. Zarantonello, Jets, Wakes, and Cavities (Academic, New York, 1957), pp. 294–295.

H. M. Smith, Principles of Holography (Wiley, New York, 1975), pp. 227–231.

H. J. Caufield, Handbook of Optical Holography (Academic, San Diego, Calif., 1979), pp. 491–493.

S. H. Lee, ed., Optical Information Processing, Fundamentals (Springer-Verlag, Berlin, 1981), pp. 150–151.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup of the photon-echo novelty filter and the time sequence of the optical pulses (not to scale). The notations 1, 2, 3, and e refer to the three laser pulses and the photon-echo pulse, respectively; n(t) refers to a transparent medium with a changing index of refraction.

Fig. 2
Fig. 2

Change of the optical path length in time through a KD*P crystal under a high-voltage pulse. T is the novelty filter’s response time as defined in Fig. 1.

Fig. 3
Fig. 3

Average change of the optical path length through a He jet during different time intervals; v is the jet speed. The laser beam crossed the flow at approximately 4 mm from the nozzle.

Fig. 4
Fig. 4

Average change of the optical path length through a He jet during different time intervals. The jet speed was 130 m/s; z is the position where the laser crosses the flow.

Fig. 5
Fig. 5

Novelty filter output with and without one arm blocked. (a) A single echo intensity profile on the plane of the He jet. The response time of the novelty filter was 20 μs. The profile was imaged on the camera. (b) A novel phase profile on the plane of the He jet. The response time of the novelty filter was 20 μs. The profile is represented by interference intensity and was imaged on the camera.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

f G = 0.426 v / r 0 ,
r 0 = 0.185 λ 2 / C n 2 Δ z 3 / 5 ,
n r 1 + r - n r 1 2 = C n 2 r 2 / 3 ,
Δ ϕ = n r 1 + r - n r 1 2 1 / 2 Δ z .
E ω E 3 ω E 2 ω E 1 ω * ,
t = t 3 + t 2 - t 1 ,
k = k 3 + k 2 - k 1 ,
k = - k 1 .
δ sin ω t i + T - sin ω t i ,
δ 2 sin 2 ω t i + T + sin 2 ω t i - 2   sin ω t i + T sin ω t i .
δ 2 1 / 2 + 1 / 2 + cos ω 2 t i + T - cos ω T = 1 - cos ω T .

Metrics