Abstract

The influence of dispersion on the sensitivity of highly birefringent fibers to temperature and hydrostatic pressure was experimentally investigated. In fibers with geometric birefringence that shows high dispersion, great differences were observed between group and phase sensitivities to temperature and hydrostatic pressure. This difference may reach 400% in the case of temperature response. In contrast, in weakly dispersive fibers with stress-induced birefringence these differences were of the order of 8% and 14%, respectively, for temperature and pressure. The influence of the dispersion effect on the temperature compensation of white-light interferometric sensors based on highly birefringent fibers was also discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Boston, Mass., 1995).
  2. K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995).
    [CrossRef]
  3. K. Okamoto, T. Hosaka, Y. Sasaki, “Linear single polarization fibers with zero polarization mode dispersion,” IEEE J. Quantum Electron. QE-18, 496–503 (1982).
    [CrossRef]
  4. K. S. Chiang, “Condition for obtaining zero polarization mode dispersion in elliptical-core fiber,” Electron. Lett. 21, 592–593 (1985).
    [CrossRef]
  5. Y. J. Rao, D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996).
    [CrossRef]
  6. W. Urbanczyk, W. J. Bock, “Analysis of dispersion effects for white-light interferometric fiber-optic sensors,” Appl. Opt. 33, 124–129 (1994).
    [CrossRef] [PubMed]
  7. W. J. Bock, W. Urbanczyk, “Measurement of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing-type interferometry,” Appl. Opt. 32, 5841–5848 (1993).
    [CrossRef] [PubMed]
  8. R. B. Sosman, “Electrical and optical properties of silica,” in International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, E. W. Wasburn, ed. (McGraw-Hill, New York, 1929), Vol. 6, pp. 341–344.
  9. J. H. Shields, J. W. Ellis, “Dispersion of birefringence of quartz in the near infrared,” J. Opt. Soc. Am. 46, 263–265 (1956).
    [CrossRef]
  10. S. C. Rashleigh, “Origins and polarization control of polarization effects in single-mode fibers,” J. Lightwave Technol. LT-1, 312–331 (1983).
    [CrossRef]
  11. J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
    [CrossRef]
  12. M. Fontaine, “Computations of optical birefringence characteristics of highly eccentric elliptical core fibers under various thermal stress conditions,” J. Appl. Phys. 77, 1–6 (1995).
  13. J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fiber in differential configuration,” Electron. Lett. 20, 51–53 (1984).
    [CrossRef]

1996 (1)

Y. J. Rao, D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996).
[CrossRef]

1995 (1)

M. Fontaine, “Computations of optical birefringence characteristics of highly eccentric elliptical core fibers under various thermal stress conditions,” J. Appl. Phys. 77, 1–6 (1995).

1994 (1)

1993 (1)

1986 (1)

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

1985 (1)

K. S. Chiang, “Condition for obtaining zero polarization mode dispersion in elliptical-core fiber,” Electron. Lett. 21, 592–593 (1985).
[CrossRef]

1984 (1)

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fiber in differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

1983 (1)

S. C. Rashleigh, “Origins and polarization control of polarization effects in single-mode fibers,” J. Lightwave Technol. LT-1, 312–331 (1983).
[CrossRef]

1982 (1)

K. Okamoto, T. Hosaka, Y. Sasaki, “Linear single polarization fibers with zero polarization mode dispersion,” IEEE J. Quantum Electron. QE-18, 496–503 (1982).
[CrossRef]

1956 (1)

Bock, W. J.

Chiang, K. S.

K. S. Chiang, “Condition for obtaining zero polarization mode dispersion in elliptical-core fiber,” Electron. Lett. 21, 592–593 (1985).
[CrossRef]

Dakin, J. P.

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fiber in differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Dyott, R. B.

R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Boston, Mass., 1995).

Ellis, J. W.

Fontaine, M.

M. Fontaine, “Computations of optical birefringence characteristics of highly eccentric elliptical core fibers under various thermal stress conditions,” J. Appl. Phys. 77, 1–6 (1995).

Grattan, K. T. V.

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995).
[CrossRef]

Hosaka, T.

K. Okamoto, T. Hosaka, Y. Sasaki, “Linear single polarization fibers with zero polarization mode dispersion,” IEEE J. Quantum Electron. QE-18, 496–503 (1982).
[CrossRef]

Jackson, D. A.

Y. J. Rao, D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996).
[CrossRef]

Meggitt, B. T.

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995).
[CrossRef]

Noda, J.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

Okamoto, K.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

K. Okamoto, T. Hosaka, Y. Sasaki, “Linear single polarization fibers with zero polarization mode dispersion,” IEEE J. Quantum Electron. QE-18, 496–503 (1982).
[CrossRef]

Rao, Y. J.

Y. J. Rao, D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996).
[CrossRef]

Rashleigh, S. C.

S. C. Rashleigh, “Origins and polarization control of polarization effects in single-mode fibers,” J. Lightwave Technol. LT-1, 312–331 (1983).
[CrossRef]

Sasaki, Y.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

K. Okamoto, T. Hosaka, Y. Sasaki, “Linear single polarization fibers with zero polarization mode dispersion,” IEEE J. Quantum Electron. QE-18, 496–503 (1982).
[CrossRef]

Shields, J. H.

Sosman, R. B.

R. B. Sosman, “Electrical and optical properties of silica,” in International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, E. W. Wasburn, ed. (McGraw-Hill, New York, 1929), Vol. 6, pp. 341–344.

Urbanczyk, W.

Wade, C. A.

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fiber in differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (2)

K. S. Chiang, “Condition for obtaining zero polarization mode dispersion in elliptical-core fiber,” Electron. Lett. 21, 592–593 (1985).
[CrossRef]

J. P. Dakin, C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fiber in differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Okamoto, T. Hosaka, Y. Sasaki, “Linear single polarization fibers with zero polarization mode dispersion,” IEEE J. Quantum Electron. QE-18, 496–503 (1982).
[CrossRef]

J. Appl. Phys. (1)

M. Fontaine, “Computations of optical birefringence characteristics of highly eccentric elliptical core fibers under various thermal stress conditions,” J. Appl. Phys. 77, 1–6 (1995).

J. Lightwave Technol. (2)

S. C. Rashleigh, “Origins and polarization control of polarization effects in single-mode fibers,” J. Lightwave Technol. LT-1, 312–331 (1983).
[CrossRef]

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (1)

Y. J. Rao, D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981–999 (1996).
[CrossRef]

Other (3)

R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Boston, Mass., 1995).

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995).
[CrossRef]

R. B. Sosman, “Electrical and optical properties of silica,” in International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, E. W. Wasburn, ed. (McGraw-Hill, New York, 1929), Vol. 6, pp. 341–344.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the system for measuring group and phase sensitivities in HB fibers: SLD, superluminescent diode; LS, collimating lens; WP, Wollaston prism; A, analyzer; CL, cylindrical lens.

Fig. 2
Fig. 2

Temperature-induced displacements of the contrast function ΔM c and individual interference fringes ΔM f in highly dispersive Corning fiber and weakly dispersive York fiber.

Fig. 3
Fig. 3

Pressure-induced displacements of the contrast function ΔM c and individual interference fringes ΔM f in highly dispersive Corning fiber and weakly dispersive York fiber.

Fig. 4
Fig. 4

Group and phase temperature responses in a hydrostatic pressure sensor composed of Corning compensating fiber (L C = 3.37 m) and York sensing fiber (L S = 1.80 m).

Tables (2)

Tables Icon

Table 1 Basic Characteristics of Four Commercially Available HB Fibers at λ0 = 826 nm

Tables Icon

Table 2 Group and Phase Sensitivities to Hydrostatic Pressure and Temperature at λ0 = 826 nm in HB Fibers with Geometrical and Stress-Induced Birefringencea

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I y = I 0 y 1 + 0.5 γ L Δ N - 2 α y Δ N WP - g 0 × cos L Δ n - 2 α y Δ n WP - φ 0 ,
Δ M c = L   Δ n WP λ 0 Δ N WP Δ N X   Δ X ,
Δ M f = L   1 λ 0 Δ n X   Δ X .
Δ N X = λ 0 L Δ N WP Δ n WP Δ M c Δ X ,
Δ n X = λ 0 L Δ M f Δ X ,
Δ n = Δ n G + a λ Δ T ,
Δ N = Δ n G + a λ Δ T - λ   a λ λ   Δ T ,
Δ n T = a λ ,
Δ N T = a λ - λ   a λ λ ,
Δ N T = Δ n T - Δ n - Δ N Δ T .
L S Δ n S T = L C Δ n C T ,
L S Δ N S T = L C Δ N C T .

Metrics