Abstract

The dependence of lidar return signals on the aperture size of the field stop is examined. Observational results are presented for both Newtonian and Cassegrainian telescopes. Analytic expressions are derived for the lidar geometric form factors, in satisfactory agreement with the experiments.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, Laser Remote Sensing (Krieger, Malabar, Fla., 1985), p. 265.
  2. K. Sassen, R. L. Petrilla, “Lidar depolarization from multiple scattering in marine stratus clouds,” Appl. Opt. 25, 1450–1459 (1986).
    [CrossRef] [PubMed]
  3. P. Bruscaglioni, G. Zaccanti, L. Pantani, L. Stefanutti, “An approximate procedure to isolate single scattering contribution to lidar returns from fogs,” Int. J. Remote Sensing 4, 399–417 (1983).
    [CrossRef]
  4. R. J. Allen, C. M. R. Platt, “Lidar for multiple backscattering and depolarization observations,” Appl. Opt. 16, 3193–3199 (1977).
    [CrossRef] [PubMed]
  5. N. Takeuchi, T. Sato, “Geometrical form factor of a lidar with a narrow-band interference filter,” Rev. Laser Eng. 15, 296–306 (1987), in Japanese.
    [CrossRef]
  6. N. Takeuchi, H. Kuze, Y. Sakurada, T. Takamura, S. Murata, K. Abe, S. Moody, “Construction of a multi-wavelength lidar system for satellite data atmospheric correction,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 71–74.
  7. H. Kuze, M. Qiang, Y. Sakurada, T. Takamura, N. Takeuchi, “LOWTRAN7 simulation of a multi-wavelength lidar applied to the atmospheric correction of satellite data,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 75–78.
  8. NASA 1976 U.S. Standard Atmosphere Supplement (U.S. GPO, Washington, D.C., 1976).

1987 (1)

N. Takeuchi, T. Sato, “Geometrical form factor of a lidar with a narrow-band interference filter,” Rev. Laser Eng. 15, 296–306 (1987), in Japanese.
[CrossRef]

1986 (1)

1983 (1)

P. Bruscaglioni, G. Zaccanti, L. Pantani, L. Stefanutti, “An approximate procedure to isolate single scattering contribution to lidar returns from fogs,” Int. J. Remote Sensing 4, 399–417 (1983).
[CrossRef]

1977 (1)

Abe, K.

N. Takeuchi, H. Kuze, Y. Sakurada, T. Takamura, S. Murata, K. Abe, S. Moody, “Construction of a multi-wavelength lidar system for satellite data atmospheric correction,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 71–74.

Allen, R. J.

Bruscaglioni, P.

P. Bruscaglioni, G. Zaccanti, L. Pantani, L. Stefanutti, “An approximate procedure to isolate single scattering contribution to lidar returns from fogs,” Int. J. Remote Sensing 4, 399–417 (1983).
[CrossRef]

Kuze, H.

H. Kuze, M. Qiang, Y. Sakurada, T. Takamura, N. Takeuchi, “LOWTRAN7 simulation of a multi-wavelength lidar applied to the atmospheric correction of satellite data,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 75–78.

N. Takeuchi, H. Kuze, Y. Sakurada, T. Takamura, S. Murata, K. Abe, S. Moody, “Construction of a multi-wavelength lidar system for satellite data atmospheric correction,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 71–74.

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Krieger, Malabar, Fla., 1985), p. 265.

Moody, S.

N. Takeuchi, H. Kuze, Y. Sakurada, T. Takamura, S. Murata, K. Abe, S. Moody, “Construction of a multi-wavelength lidar system for satellite data atmospheric correction,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 71–74.

Murata, S.

N. Takeuchi, H. Kuze, Y. Sakurada, T. Takamura, S. Murata, K. Abe, S. Moody, “Construction of a multi-wavelength lidar system for satellite data atmospheric correction,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 71–74.

Pantani, L.

P. Bruscaglioni, G. Zaccanti, L. Pantani, L. Stefanutti, “An approximate procedure to isolate single scattering contribution to lidar returns from fogs,” Int. J. Remote Sensing 4, 399–417 (1983).
[CrossRef]

Petrilla, R. L.

Platt, C. M. R.

Qiang, M.

H. Kuze, M. Qiang, Y. Sakurada, T. Takamura, N. Takeuchi, “LOWTRAN7 simulation of a multi-wavelength lidar applied to the atmospheric correction of satellite data,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 75–78.

Sakurada, Y.

H. Kuze, M. Qiang, Y. Sakurada, T. Takamura, N. Takeuchi, “LOWTRAN7 simulation of a multi-wavelength lidar applied to the atmospheric correction of satellite data,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 75–78.

N. Takeuchi, H. Kuze, Y. Sakurada, T. Takamura, S. Murata, K. Abe, S. Moody, “Construction of a multi-wavelength lidar system for satellite data atmospheric correction,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 71–74.

Sassen, K.

Sato, T.

N. Takeuchi, T. Sato, “Geometrical form factor of a lidar with a narrow-band interference filter,” Rev. Laser Eng. 15, 296–306 (1987), in Japanese.
[CrossRef]

Stefanutti, L.

P. Bruscaglioni, G. Zaccanti, L. Pantani, L. Stefanutti, “An approximate procedure to isolate single scattering contribution to lidar returns from fogs,” Int. J. Remote Sensing 4, 399–417 (1983).
[CrossRef]

Takamura, T.

H. Kuze, M. Qiang, Y. Sakurada, T. Takamura, N. Takeuchi, “LOWTRAN7 simulation of a multi-wavelength lidar applied to the atmospheric correction of satellite data,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 75–78.

N. Takeuchi, H. Kuze, Y. Sakurada, T. Takamura, S. Murata, K. Abe, S. Moody, “Construction of a multi-wavelength lidar system for satellite data atmospheric correction,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 71–74.

Takeuchi, N.

N. Takeuchi, T. Sato, “Geometrical form factor of a lidar with a narrow-band interference filter,” Rev. Laser Eng. 15, 296–306 (1987), in Japanese.
[CrossRef]

N. Takeuchi, H. Kuze, Y. Sakurada, T. Takamura, S. Murata, K. Abe, S. Moody, “Construction of a multi-wavelength lidar system for satellite data atmospheric correction,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 71–74.

H. Kuze, M. Qiang, Y. Sakurada, T. Takamura, N. Takeuchi, “LOWTRAN7 simulation of a multi-wavelength lidar applied to the atmospheric correction of satellite data,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 75–78.

Zaccanti, G.

P. Bruscaglioni, G. Zaccanti, L. Pantani, L. Stefanutti, “An approximate procedure to isolate single scattering contribution to lidar returns from fogs,” Int. J. Remote Sensing 4, 399–417 (1983).
[CrossRef]

Appl. Opt. (2)

Int. J. Remote Sensing (1)

P. Bruscaglioni, G. Zaccanti, L. Pantani, L. Stefanutti, “An approximate procedure to isolate single scattering contribution to lidar returns from fogs,” Int. J. Remote Sensing 4, 399–417 (1983).
[CrossRef]

Rev. Laser Eng. (1)

N. Takeuchi, T. Sato, “Geometrical form factor of a lidar with a narrow-band interference filter,” Rev. Laser Eng. 15, 296–306 (1987), in Japanese.
[CrossRef]

Other (4)

N. Takeuchi, H. Kuze, Y. Sakurada, T. Takamura, S. Murata, K. Abe, S. Moody, “Construction of a multi-wavelength lidar system for satellite data atmospheric correction,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 71–74.

H. Kuze, M. Qiang, Y. Sakurada, T. Takamura, N. Takeuchi, “LOWTRAN7 simulation of a multi-wavelength lidar applied to the atmospheric correction of satellite data,” in Advances in Atmospheric Remote Sensing with Lidar, Proceedings of the 18th International Laser Radar Conference, Berlin, 1996 (Springer-Verlag, Berlin, 1997), pp. 75–78.

NASA 1976 U.S. Standard Atmosphere Supplement (U.S. GPO, Washington, D.C., 1976).

R. M. Measures, Laser Remote Sensing (Krieger, Malabar, Fla., 1985), p. 265.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometric ray trace of a Newtonian telescope: (a) P (at x = a) is the object point and Q (at x = -b) is its image, (b) the possible range of a and b. In these figures the primary (concave) mirror is replaced by a lens of diameter D at the origin. The secondary (flat) mirror, which is actually tilted approximately 45 deg with respect to the optical axis, is represented by two disks of diameter G in (a). The first, on the object side, functions as an obstacle whereas the second, on the image side, serves as an aperture. The field-stop aperture is located at the focal position.

Fig. 2
Fig. 2

Optical configuration of a Cassegrainian telescope. The divergence angle of the laser beam is θ L and the telescope FOV angle is θFOV. The overlap is assumed to begin at r A and is complete at r B .

Fig. 3
Fig. 3

Observed and simulated A-scope signals obtained by use of a multiwavelength lidar (1064 nm in this case) with a Newtonian telescope. The size of the field-stop (FS) aperture changed between 3 and 7 mm.

Fig. 4
Fig. 4

Observed and simulated A-scope signals obtained by use of a multiwavelength lidar. The wavelength is 532 nm and the aperture size is between 3 and 8 mm.

Fig. 5
Fig. 5

Observed and simulated A-scope signals obtained by use of a portable lidar with a Cassegrainian telescope. The wavelength of the lidar is 532 nm. The field-stop (FS) aperture changed between 2 and 14 mm.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

x S = D - G f / D ,
y = δ x + b / 2 b - f ,
y = - tan   ϕ x - a .
tan   ϕ = tan θ FOV / 2 = δ / 2 f ,
b b min f DG - D - G δ D G - δ ,
a a max f DG - D - G δ G δ .
a a min f DG + D - G δ D δ
b b max f DG + D - G δ G D - δ .
y = θ L 2 x - D - G   f D + d L 2 .
x A = r A = δ a min / f + θ L D - G f / D - d L δ / f + θ L .
x B = r B = δ a max / f - θ L D - G f / D + d L δ / f - θ L .
F = f 1 f 2 f 2 - f 1 + d .
ξ = f 1 - d f 2 + d - f 2 d f 2 - f 1 + d .
θ FOV = δ / F .
r A = 2 h - d L / θ FOV + θ L .
r B = 2 D + 2 h + d L / θ FOV - θ L ,
P r = KG r r 2 β aerosol r + β molecule r × exp - 2   0 r α aerosol r + α molecule r d r ,
G r = 1 2 1 + tanh r - r 0 Γ ,
r 0 = r A + r B / 2 ,
Γ = r A - r B / κ .

Metrics