Abstract

The gradual reorientations in crystal geometry encountered during angle-multiplexed holographic recording with obliquely incident recording beams can create significant parametric exposure-time and recording-angle dependencies in both grating writing- and erasure-time constants. We present a parametric extension of the classically derived backward-recursion algorithm that compensates for the intermingling effects of recording geometry, writing-beam intensity variations, and unique crystal behavior. We present experimental data for a sequence of 301 holograms recorded with the goal of equal hologram strength and, separately, the same sequence recorded with the goal of equal hologram reconstruction intensity—which are different cases for a steeply incident readout beam.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
    [CrossRef]
  2. J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  3. D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
    [CrossRef]
  4. M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7, 2329–2338 (1990).
    [CrossRef]
  5. J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
    [CrossRef]
  6. J. Hong, I. McMichael, T. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
    [CrossRef]
  7. D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 11, 70–76 (1995).
    [CrossRef]
  8. F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  9. F. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991).
    [CrossRef] [PubMed]
  10. S. Tao, Z. H. Song, D. R. Selviah, J. E. Midwinter, “Spatioangular-multiplexing scheme for dense holographic storage,” Appl. Opt. 34, 6729–6737 (1995).
    [CrossRef] [PubMed]
  11. S. Tao, D. R. Selviah, J. E. Midwinter, “Spatioangular multiplexed storage in 750 holograms in an Fe:LiNbO3 crystal,” Opt. Lett. 18, 921–914 (1993).
    [CrossRef]
  12. G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef] [PubMed]
  13. M. C. Bashaw, R. C. Singer, J. F. Heanue, L. Hesselink, “Coded-wavelength multiplex volume holography,” Opt. Lett. 20, 1916–1918 (1995).
    [CrossRef] [PubMed]
  14. C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Comm. 85, 171–176 (1991).
    [CrossRef]
  15. C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Potentialities and limitations of hologram multiplexing by using the phase-encoding technique,” Appl. Opt. 31, 5700–5705 (1992).
    [CrossRef] [PubMed]
  16. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
    [CrossRef] [PubMed]
  17. H. Zhou, F. Zhao, F. T. S. Yu, “Angle-dependent diffraction efficiency in a thick photorefractive hologram,” Appl. Opt. 34, 1303–1309 (1995).
    [CrossRef] [PubMed]
  18. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
    [CrossRef]
  19. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  20. K. Bløtekjaer, “Limitations on holographic storage capacity of photochromic and photorefractive media,” Appl. Opt. 18, 57–67 (1979).
    [CrossRef] [PubMed]
  21. H.-Y. S. Li, J. Hong, “Nonuniformity in hologram diffraction efficiency from time-constant error in the recording schedule,” J. Opt. Soc. Am. B 13, 894–899 (1996).
    [CrossRef]
  22. G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90° geometry,” Opt. Commun. 117, 49–55 (1995).
    [CrossRef]
  23. A. Aharoni, M. C. Bashaw, L. Hesselink, “Capacity considerations for multiplexed holographic optical data storage,” in Practical Holography VII: Imaging and Materials, S. A. Benton, ed., Proc. SPIE1914, 56–65 (1993).
    [CrossRef]
  24. X. An, D. Psaltis, “Experimental characterization of an angle-multiplexed holographic memory,” Opt. Lett. 20, 1913–1915 (1995).
    [CrossRef] [PubMed]
  25. F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
    [CrossRef] [PubMed]
  26. A. C. Strasser, E. S. Maniloff, K. M. Johnson, S. D. D. Goggin, “Procedure for recording multiple-exposure holograms with equal diffraction efficiency in photorefractive media,” Opt. Lett. 14, 6–8 (1989).
    [CrossRef] [PubMed]
  27. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  28. E. Maniloff, K. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
    [CrossRef]
  29. G. Montemezzani, M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
    [CrossRef]
  30. C. Gu, J. Hong, H.-Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
    [CrossRef]
  31. M. L. DeLong, B. D. Duncan, J. H. Parker, “Volume-holographic memory for laser threat discrimination,” J. Opt. Soc. Am. B 13, 2198–2208 (1996).
    [CrossRef]
  32. M. L. DeLong, “Volume holographic memory for laser threat discrimination,” Ph.D. dissertation (University of Dayton, Dayton, Ohio, 1996).
  33. F. Zhao, K. Sayano, “Compact read-only memory with lensless phase-conjugate holograms,” Opt. Lett. 21, 1295–1297 (1996).
    [CrossRef] [PubMed]
  34. A. A. Freschi, J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635–637 (1995).
    [CrossRef] [PubMed]
  35. A. A. Freschi, J. Frejlich, “Stabilized photorefractive modulation recording beyond 100% diffraction efficiency in LiNbO3:Fe crystals,” J. Opt. Soc. Am. B 11, 1837–1841 (1994).
    [CrossRef]
  36. M. Aguilar, E. Serrano, V. López, M. Carrascosa, F. Agulló-López, “Optimization of photorefractive recording by means of light phase-shifts,” Opt. Commun. 116, 398–404 (1995).
    [CrossRef]
  37. A. V. Dooghin, P. N. Ilinykh, O. P. Nestiorkin, B. Y. Zel’dovich, “Phase-locked detection in photorefractive crystals at the multiple frequency difference of light beams,” Opt. Lett. 17, 889–891 (1992).
    [CrossRef] [PubMed]
  38. C. Gu, J. Hong, “Noise gratings formed during the multiple exposure schedule in photorefractive media,” Opt. Commun. 93, 213–218 (1992).
    [CrossRef]
  39. C. Gu, J. Hong, P. Yeh, “Volume holographic storage in photorefractive media,” in Optical Computing and Neural Networks, K.-Y. Hsu, H.-K. Liu, eds., Proc. SPIE1812, 97–102 (1992).
    [CrossRef]
  40. K. Kamra, K. Singh, “Characterization of beam fanning in BaTiO3 under biasing illumination and its application as log processor,” Opt. Eng. 34, 2266–2273 (1995).
    [CrossRef]
  41. R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. QE-23, 2136–2141 (1987).
    [CrossRef]
  42. C. Gu, G. Sornat, J. Hong, “Bit-error rate and statistics of complex amplitude noise in holographic data storage,” Opt. Lett. 21, 1070–1072 (1996).
    [CrossRef] [PubMed]
  43. L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter 3, 5399–5406 (1991).
    [CrossRef]
  44. R. Müller, L. Arizmendi, M. Carrascosa, J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3214 (1992).
    [CrossRef]
  45. J. A. Dobrowolski, in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1, pp. 42.32, 42.40.
  46. We used the data analysis package Grapher for Windows by Golden Software, Inc. (Golden, Colo., 1993) to perform all numerical curve fits.
  47. G. W. Burr, D. Psaltis, “Effect of oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms,” Opt. Lett. 21, 893–895 (1996).
    [CrossRef] [PubMed]

1997 (1)

G. Montemezzani, M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

1996 (6)

1995 (11)

H. Zhou, F. Zhao, F. T. S. Yu, “Angle-dependent diffraction efficiency in a thick photorefractive hologram,” Appl. Opt. 34, 1303–1309 (1995).
[CrossRef] [PubMed]

S. Tao, Z. H. Song, D. R. Selviah, J. E. Midwinter, “Spatioangular-multiplexing scheme for dense holographic storage,” Appl. Opt. 34, 6729–6737 (1995).
[CrossRef] [PubMed]

A. A. Freschi, J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635–637 (1995).
[CrossRef] [PubMed]

D. Psaltis, M. Levene, A. Pu, G. Barbastathis, K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
[CrossRef] [PubMed]

X. An, D. Psaltis, “Experimental characterization of an angle-multiplexed holographic memory,” Opt. Lett. 20, 1913–1915 (1995).
[CrossRef] [PubMed]

M. C. Bashaw, R. C. Singer, J. F. Heanue, L. Hesselink, “Coded-wavelength multiplex volume holography,” Opt. Lett. 20, 1916–1918 (1995).
[CrossRef] [PubMed]

G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90° geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

K. Kamra, K. Singh, “Characterization of beam fanning in BaTiO3 under biasing illumination and its application as log processor,” Opt. Eng. 34, 2266–2273 (1995).
[CrossRef]

M. Aguilar, E. Serrano, V. López, M. Carrascosa, F. Agulló-López, “Optimization of photorefractive recording by means of light phase-shifts,” Opt. Commun. 116, 398–404 (1995).
[CrossRef]

J. Hong, I. McMichael, T. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 11, 70–76 (1995).
[CrossRef]

1994 (1)

1993 (2)

1992 (5)

1991 (5)

C. Gu, J. Hong, H.-Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter 3, 5399–5406 (1991).
[CrossRef]

C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Comm. 85, 171–176 (1991).
[CrossRef]

E. Maniloff, K. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

F. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991).
[CrossRef] [PubMed]

1990 (1)

1989 (1)

1988 (1)

1987 (1)

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. QE-23, 2136–2141 (1987).
[CrossRef]

1980 (1)

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

1979 (2)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

K. Bløtekjaer, “Limitations on holographic storage capacity of photochromic and photorefractive media,” Appl. Opt. 18, 57–67 (1979).
[CrossRef] [PubMed]

1975 (1)

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

1971 (1)

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

1968 (1)

F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[CrossRef]

Aguilar, M.

M. Aguilar, E. Serrano, V. López, M. Carrascosa, F. Agulló-López, “Optimization of photorefractive recording by means of light phase-shifts,” Opt. Commun. 116, 398–404 (1995).
[CrossRef]

Agulló-López, F.

M. Aguilar, E. Serrano, V. López, M. Carrascosa, F. Agulló-López, “Optimization of photorefractive recording by means of light phase-shifts,” Opt. Commun. 116, 398–404 (1995).
[CrossRef]

Aharoni, A.

A. Aharoni, M. C. Bashaw, L. Hesselink, “Capacity considerations for multiplexed holographic optical data storage,” in Practical Holography VII: Imaging and Materials, S. A. Benton, ed., Proc. SPIE1914, 56–65 (1993).
[CrossRef]

Amodei, J. J.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

An, X.

Arizmendi, L.

R. Müller, L. Arizmendi, M. Carrascosa, J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3214 (1992).
[CrossRef]

L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter 3, 5399–5406 (1991).
[CrossRef]

Baquedano, J.

L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter 3, 5399–5406 (1991).
[CrossRef]

Barbastathis, G.

Barker, R. C.

Bashaw, M. C.

Bløtekjaer, K.

Brady, D.

Burke, W. J.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Burr, G. W.

Cabrera, J. M.

R. Müller, L. Arizmendi, M. Carrascosa, J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3214 (1992).
[CrossRef]

L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter 3, 5399–5406 (1991).
[CrossRef]

Carrascosa, M.

M. Aguilar, E. Serrano, V. López, M. Carrascosa, F. Agulló-López, “Optimization of photorefractive recording by means of light phase-shifts,” Opt. Commun. 116, 398–404 (1995).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3214 (1992).
[CrossRef]

L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter 3, 5399–5406 (1991).
[CrossRef]

Chang, T.

J. Hong, I. McMichael, T. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Chen, F. S.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[CrossRef]

Christian, W.

J. Hong, I. McMichael, T. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Curtis, K.

DeLong, M. L.

M. L. DeLong, B. D. Duncan, J. H. Parker, “Volume-holographic memory for laser threat discrimination,” J. Opt. Soc. Am. B 13, 2198–2208 (1996).
[CrossRef]

M. L. DeLong, “Volume holographic memory for laser threat discrimination,” Ph.D. dissertation (University of Dayton, Dayton, Ohio, 1996).

Denz, C.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Potentialities and limitations of hologram multiplexing by using the phase-encoding technique,” Appl. Opt. 31, 5700–5705 (1992).
[CrossRef] [PubMed]

C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Comm. 85, 171–176 (1991).
[CrossRef]

Dobrowolski, J. A.

J. A. Dobrowolski, in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1, pp. 42.32, 42.40.

Dooghin, A. V.

Dube, R. R.

Duncan, B. D.

Feinberg, J.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Feng, S.

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. QE-23, 2136–2141 (1987).
[CrossRef]

Fraser, D. B.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[CrossRef]

Frejlich, J.

Freschi, A. A.

Goggin, S. D. D.

Gu, C.

C. Gu, G. Sornat, J. Hong, “Bit-error rate and statistics of complex amplitude noise in holographic data storage,” Opt. Lett. 21, 1070–1072 (1996).
[CrossRef] [PubMed]

C. Gu, J. Hong, “Noise gratings formed during the multiple exposure schedule in photorefractive media,” Opt. Commun. 93, 213–218 (1992).
[CrossRef]

C. Gu, J. Hong, H.-Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

C. Gu, J. Hong, P. Yeh, “Volume holographic storage in photorefractive media,” in Optical Computing and Neural Networks, K.-Y. Hsu, H.-K. Liu, eds., Proc. SPIE1812, 97–102 (1992).
[CrossRef]

Heanue, J. F.

Heiman, D.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Hellwarth, R. W.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Hesselink, L.

M. C. Bashaw, R. C. Singer, J. F. Heanue, L. Hesselink, “Coded-wavelength multiplex volume holography,” Opt. Lett. 20, 1916–1918 (1995).
[CrossRef] [PubMed]

A. Aharoni, M. C. Bashaw, L. Hesselink, “Capacity considerations for multiplexed holographic optical data storage,” in Practical Holography VII: Imaging and Materials, S. A. Benton, ed., Proc. SPIE1914, 56–65 (1993).
[CrossRef]

Hong, J.

H.-Y. S. Li, J. Hong, “Nonuniformity in hologram diffraction efficiency from time-constant error in the recording schedule,” J. Opt. Soc. Am. B 13, 894–899 (1996).
[CrossRef]

C. Gu, G. Sornat, J. Hong, “Bit-error rate and statistics of complex amplitude noise in holographic data storage,” Opt. Lett. 21, 1070–1072 (1996).
[CrossRef] [PubMed]

J. Hong, I. McMichael, T. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

C. Gu, J. Hong, “Noise gratings formed during the multiple exposure schedule in photorefractive media,” Opt. Commun. 93, 213–218 (1992).
[CrossRef]

C. Gu, J. Hong, H.-Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

C. Gu, J. Hong, P. Yeh, “Volume holographic storage in photorefractive media,” in Optical Computing and Neural Networks, K.-Y. Hsu, H.-K. Liu, eds., Proc. SPIE1812, 97–102 (1992).
[CrossRef]

Ilinykh, P. N.

Johnson, K.

E. Maniloff, K. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

Johnson, K. M.

Kamra, K.

K. Kamra, K. Singh, “Characterization of beam fanning in BaTiO3 under biasing illumination and its application as log processor,” Opt. Eng. 34, 2266–2273 (1995).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Krätzig, E.

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. QE-23, 2136–2141 (1987).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

LaMacchia, J. T.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[CrossRef]

Levene, M.

Leyva, V.

Li, H.-Y.

C. Gu, J. Hong, H.-Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

Li, H.-Y. S.

López, V.

M. Aguilar, E. Serrano, V. López, M. Carrascosa, F. Agulló-López, “Optimization of photorefractive recording by means of light phase-shifts,” Opt. Commun. 116, 398–404 (1995).
[CrossRef]

Ma, T.-P.

Maniloff, E.

E. Maniloff, K. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

Maniloff, E. S.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Marotz, J.

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. QE-23, 2136–2141 (1987).
[CrossRef]

McMichael, I.

J. Hong, I. McMichael, T. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Midwinter, J. E.

Mok, F.

Mok, F. H.

F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
[CrossRef] [PubMed]

G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90° geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

Montemezzani, G.

G. Montemezzani, M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Mroczkowski, S.

Müller, R.

R. Müller, L. Arizmendi, M. Carrascosa, J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3214 (1992).
[CrossRef]

Nestiorkin, O. P.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Paek, E. G.

J. Hong, I. McMichael, T. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

Parker, J. H.

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Potentialities and limitations of hologram multiplexing by using the phase-encoding technique,” Appl. Opt. 31, 5700–5705 (1992).
[CrossRef] [PubMed]

C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Comm. 85, 171–176 (1991).
[CrossRef]

Phillips, W.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Psaltis, D.

Pu, A.

Rakuljic, G. A.

Ringhofer, K. H.

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. QE-23, 2136–2141 (1987).
[CrossRef]

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Potentialities and limitations of hologram multiplexing by using the phase-encoding technique,” Appl. Opt. 31, 5700–5705 (1992).
[CrossRef] [PubMed]

C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Comm. 85, 171–176 (1991).
[CrossRef]

Rupp, R. A.

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. QE-23, 2136–2141 (1987).
[CrossRef]

Sayano, K.

Selviah, D. R.

Serrano, E.

M. Aguilar, E. Serrano, V. López, M. Carrascosa, F. Agulló-López, “Optimization of photorefractive recording by means of light phase-shifts,” Opt. Commun. 116, 398–404 (1995).
[CrossRef]

Singer, R. C.

Singh, K.

K. Kamra, K. Singh, “Characterization of beam fanning in BaTiO3 under biasing illumination and its application as log processor,” Opt. Eng. 34, 2266–2273 (1995).
[CrossRef]

Song, Z. H.

Sornat, G.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Staebler, D. L.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Stoll, H. M.

Strasser, A. C.

Tackitt, M. C.

Tanguay, A. R.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Tao, S.

Townsend, P. D.

L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter 3, 5399–5406 (1991).
[CrossRef]

Treichel, S.

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. QE-23, 2136–2141 (1987).
[CrossRef]

Tschudi, T.

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Wagner, K.

Yariv, A.

Yeh, P.

C. Gu, J. Hong, H.-Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

C. Gu, J. Hong, P. Yeh, “Volume holographic storage in photorefractive media,” in Optical Computing and Neural Networks, K.-Y. Hsu, H.-K. Liu, eds., Proc. SPIE1812, 97–102 (1992).
[CrossRef]

Yu, F. T. S.

Zel’dovich, B. Y.

Zgonik, M.

G. Montemezzani, M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Zhao, F.

Zhou, H.

Appl. Opt. (5)

Appl. Phys. Lett. (4)

R. Müller, L. Arizmendi, M. Carrascosa, J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3214 (1992).
[CrossRef]

F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[CrossRef]

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. QE-23, 2136–2141 (1987).
[CrossRef]

J. Appl. Phys. (3)

C. Gu, J. Hong, H.-Y. Li, D. Psaltis, P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
[CrossRef]

E. Maniloff, K. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
[CrossRef]

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. Condens. Matter (1)

L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter 3, 5399–5406 (1991).
[CrossRef]

Opt. Comm. (1)

C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Comm. 85, 171–176 (1991).
[CrossRef]

Opt. Commun. (3)

C. Gu, J. Hong, “Noise gratings formed during the multiple exposure schedule in photorefractive media,” Opt. Commun. 93, 213–218 (1992).
[CrossRef]

G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using the 90° geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

M. Aguilar, E. Serrano, V. López, M. Carrascosa, F. Agulló-López, “Optimization of photorefractive recording by means of light phase-shifts,” Opt. Commun. 116, 398–404 (1995).
[CrossRef]

Opt. Eng. (2)

J. Hong, I. McMichael, T. Chang, W. Christian, E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
[CrossRef]

K. Kamra, K. Singh, “Characterization of beam fanning in BaTiO3 under biasing illumination and its application as log processor,” Opt. Eng. 34, 2266–2273 (1995).
[CrossRef]

Opt. Lett. (14)

A. C. Strasser, E. S. Maniloff, K. M. Johnson, S. D. D. Goggin, “Procedure for recording multiple-exposure holograms with equal diffraction efficiency in photorefractive media,” Opt. Lett. 14, 6–8 (1989).
[CrossRef] [PubMed]

F. Mok, M. C. Tackitt, H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991).
[CrossRef] [PubMed]

A. V. Dooghin, P. N. Ilinykh, O. P. Nestiorkin, B. Y. Zel’dovich, “Phase-locked detection in photorefractive crystals at the multiple frequency difference of light beams,” Opt. Lett. 17, 889–891 (1992).
[CrossRef] [PubMed]

G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
[CrossRef] [PubMed]

F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
[CrossRef] [PubMed]

S. Tao, D. R. Selviah, J. E. Midwinter, “Spatioangular multiplexed storage in 750 holograms in an Fe:LiNbO3 crystal,” Opt. Lett. 18, 921–914 (1993).
[CrossRef]

A. A. Freschi, J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635–637 (1995).
[CrossRef] [PubMed]

D. Psaltis, M. Levene, A. Pu, G. Barbastathis, K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
[CrossRef] [PubMed]

X. An, D. Psaltis, “Experimental characterization of an angle-multiplexed holographic memory,” Opt. Lett. 20, 1913–1915 (1995).
[CrossRef] [PubMed]

M. C. Bashaw, R. C. Singer, J. F. Heanue, L. Hesselink, “Coded-wavelength multiplex volume holography,” Opt. Lett. 20, 1916–1918 (1995).
[CrossRef] [PubMed]

G. W. Burr, D. Psaltis, “Effect of oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms,” Opt. Lett. 21, 893–895 (1996).
[CrossRef] [PubMed]

F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
[CrossRef] [PubMed]

C. Gu, G. Sornat, J. Hong, “Bit-error rate and statistics of complex amplitude noise in holographic data storage,” Opt. Lett. 21, 1070–1072 (1996).
[CrossRef] [PubMed]

F. Zhao, K. Sayano, “Compact read-only memory with lensless phase-conjugate holograms,” Opt. Lett. 21, 1295–1297 (1996).
[CrossRef] [PubMed]

Phys. Rev. E (1)

G. Montemezzani, M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Sci. Am. (1)

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 11, 70–76 (1995).
[CrossRef]

Other (5)

A. Aharoni, M. C. Bashaw, L. Hesselink, “Capacity considerations for multiplexed holographic optical data storage,” in Practical Holography VII: Imaging and Materials, S. A. Benton, ed., Proc. SPIE1914, 56–65 (1993).
[CrossRef]

C. Gu, J. Hong, P. Yeh, “Volume holographic storage in photorefractive media,” in Optical Computing and Neural Networks, K.-Y. Hsu, H.-K. Liu, eds., Proc. SPIE1812, 97–102 (1992).
[CrossRef]

M. L. DeLong, “Volume holographic memory for laser threat discrimination,” Ph.D. dissertation (University of Dayton, Dayton, Ohio, 1996).

J. A. Dobrowolski, in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1, pp. 42.32, 42.40.

We used the data analysis package Grapher for Windows by Golden Software, Inc. (Golden, Colo., 1993) to perform all numerical curve fits.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Holographic reconstruction of one image frame stored in the crystal.

Fig. 2
Fig. 2

Schematic diagram of the experimental holographic recording setup.

Fig. 3
Fig. 3

Illustration of irradiance roll-off inside the crystal for a steeply incident reference beam.

Fig. 4
Fig. 4

Internal beam-crossing geometry, showing propagation directions and refracted angles. PR, photorefractive.

Fig. 5
Fig. 5

Reference-beam irradiance transmissivity inside the crystal as a function of our angular multiplexing range.

Fig. 6
Fig. 6

Nonuniform diffraction-efficiency profile that counterbalances the probe-beam irradiance roll-off inside the crystal. Here we consider the case η N = 2% at a crystal recording angle of ξ R = -20°.

Fig. 7
Fig. 7

Parametric map of the diffraction-efficiency strength observed immediately after recording. Over our angle-multiplexing range, grating strength is a function of both exposure time and crystal orientation.

Fig. 8
Fig. 8

Diffraction-efficiency data used to calibrate the parametric exposure-schedule coefficients. Note that the recording sequence starts at ξ R = +10°, proceeds in -0.1° increments, and stops at ξ R = -20°. This sequence consists of 301 frames, each recorded for t m = 80 s.

Fig. 9
Fig. 9

Parametric A m coefficients interpolated in region 2 and modified in region 1 of the calibration data in Fig. 8.

Fig. 10
Fig. 10

Parametric erasure-time coefficient τ em based on the calibration data in Fig. 8.

Fig. 11
Fig. 11

Predicted diffraction-efficiency profile for the t m = 80 s equal-exposure-time sequence, incorporating coefficient calibrations for A m and τ em .

Fig. 12
Fig. 12

Comparison of the exposure schedules predicted by Eq. (13) to achieve uniform diffraction efficiency by use of the nonparametric classical relation of Eq. (10) (dotted–dashed curve), the parametric extension of Eq. (13) (solid curve), and a modified version of the parametric extension where B m = 2 for all frames (dashed curve). Note that the recording sequence starts at ξ R = +10° and proceeds in -0.1° increments until ξ R = -20°, thus yielding 301 frames.

Fig. 13
Fig. 13

Hologram irradiance reconstruction data corresponding to the sequence in Fig. 14.

Fig. 14
Fig. 14

Diffraction-efficiency data for a recording sequence by use of the parametrically extended exposure schedule from Fig. 12. The goal was uniform diffraction efficiency. The average diffraction efficiency η̅, marked by the dashed line, had a standard deviation σ as shown.

Fig. 15
Fig. 15

Comparison of parametric exposure schedules predicted by Eq. (13) to achieve uniform hologram irradiance reconstruction with various final frame exposure times t M . The same nonuniform η-profile shape is specified by Eq. (19) in each case.

Fig. 16
Fig. 16

Predicted diffraction-efficiency profiles corresponding to the various exposure schedules given in Fig. 15.

Fig. 17
Fig. 17

Diffraction-efficiency data for a recording sequence that used the parametrically extended exposure schedule from Fig. 15 with t M = 80 s. The predicted nonuniform diffraction-efficiency prediction, given by Eq. (19), theoretically yields uniform irradiance reconstruction.

Fig. 18
Fig. 18

Normalized laser-power fluctuations, averaged and correlated to recording angle, observed during the recording of the holographic sequence given in Figs. 17 and 19.

Fig. 19
Fig. 19

Hologram irradiance-reconstruction data with the exposure-schedule goal of uniform reconstruction intensity.

Tables (1)

Tables Icon

Table 1 Values of Coefficients for the Power-Log Curve Fits in Fig. 7

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

Δ n m = Δ n max 1 - exp - t m τ w exp - i = m + 1 M t i τ e ,
1 - exp - t m τ w exp - t m + 1 τ e = 1 - exp - t m + 1 τ w ,
t m - 1 = - τ w ln 1 - exp t m τ e + exp t m 1 τ e - 1 τ w ,
η = sin 2 π Δ nd λ c R c S Δ n 2 π d λ c R c S 2 .
η m t m 2 Δ n max π d τ w λ G 2 exp - i = m + 1 M t i τ e / 2 ,
Δ n max π d τ w λ G 2 exp A
η m t m 2 exp A exp - i = m + 1 M t i τ e .
A = 2   ln Δ n max π d τ w λ G .
ln t m - t m + 1 2 τ e = ln t m + 1 .
t m - 1 = t m exp t m 2 τ e .
η m t m B m exp A m exp - i = m + 1 M t i τ em .
t m + 1 B m + 1 exp A m + 1 exp - i = m + 2 M t i τ em + 1 = t m B m exp A m exp - t m + 1 τ em - i = m + 2 M t i τ em - Δ η m .
t m - 1 = t m B m exp Δ A m exp 1 τ em - 1 - 1 τ em i = m + 1 M   t i + Δ η m - 1 exp i = m + 1 M t i τ em - 1 - A m - 1 1 B m - 1 × exp t m B m - 1 τ em - 1 ,
b = a cos   Θ cos arcsin sin   Θ n .
T Θ ,   d = exp - α d Γ Θ cos Θ Γ Θ ,
Γ Θ cos arcsin sin Θ n .
I ref in = T Θ ,   d I ref ext ,
I hol ext = η m T 50 ° - ξ R I ref ext .
η m = η M T Θ M T Θ m .
A m = ln η m - B m ln t m + i = N + 1 M   t i τ e ¯ .
η m 0.0264   exp - i = m + 1 M   t i 13,704   s = 0.0264   exp - M - m 80   s 13,704   s ,
τ em = i = m + 1 M   t i B m ln t m + A m - ln η m ,
η m power η m T 50 ° - ξ R ,
Δ η m = η M T Θ M 1 T Θ m - 1 T Θ m - 1 .

Metrics