Abstract

The influence of the glass-transition temperature T g and the electro-optical chromophore content on the grating buildup dynamics in photorefractive polymer composites is investigated. The response times were found to be strongly dependent on both parameters. In the low-T g regime, composites of different chromophore content respond similarly quickly (200–500 ms), whereas significant differences occur for T g above the measurement (room) temperature. The composites with the highest chromophore content give the best steady-state performance; however, their response is much slower than that for those containing less chromophore.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. S. Chen, “Optically-induced change of the refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3393 (1969).
    [CrossRef]
  2. K. Sutter, J. Hulliger, P. Günter, “Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyano-quinodimethane,” J. Opt. Soc. Am. B 7, 2274–2278 (1990).
    [CrossRef]
  3. S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
    [CrossRef] [PubMed]
  4. K. Meerholz, B. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
    [CrossRef]
  5. A. M. Cox, R. D. Blackburn, D. P. West, T. A. King, F. A. Wade, D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
    [CrossRef]
  6. P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1185 (1996).
    [CrossRef] [PubMed]
  7. A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “High-performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
    [CrossRef]
  8. F. Würthner, R. Wortmann, R. Matschiner, K. Lakaszuk, K. Meerholz, Y. De Nardin, R. Bittner, C. Bräuchle, R. Sens, “Merocyanine dyes in the cyanine limit: a new class of chromophores for photorefractive materials,” Angew. Chem. Int. Ed. Engl. 36, 2765–2768 (1997).
    [CrossRef]
  9. W. E. Moerner, S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–156 (1994) and references therein.
    [CrossRef]
  10. Y. Zhang, R. Burzynski, S. Ghosal, M. K. Casstevens, “Photorefractive polymers and composites,” Adv. Mater. 8, 111–125 (1996) and references therein.
    [CrossRef]
  11. B. Kippelen, K. Meerholz, N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalva, S. Miyata eds. (CRC, Boca Raton, Fla., 1997), Chap. 8, pp. 465–513, and references therein.
  12. K. Meerholz, “Amorphous plastics pave the way for wide-spread holographic applications,” Angew. Chem. Int. Ed. Eng. 36, 945–948 (1997) and references therein.
    [CrossRef]
  13. W. E. Moerner, S. M. Silence, F. Hache, G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 22, 320–330 (1994).
    [CrossRef]
  14. R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, D. M. Burland, “Design of optimized photorefractive polymers: a novel class of chromophores,” J. Chem. Phys. 105, 10637–10647 (1996).
    [CrossRef]
  15. B. Kippelen, F. Meyers, N. Peyghambarian, S. Marder, “Chromophore design for photorefractive applications,” J. Am. Chem. Soc. 119, 4559–4560 (1997).
    [CrossRef]
  16. H. J. Bolink, V. V. Krasnikov, G. G. Malliaras, G. Hadziioannou, “Effect of plasticization on the performance of photorefractive polymers,” J. Phys. Chem. 100, 16356–16360 (1996).
    [CrossRef]
  17. Further information will be available in a paper entitled “Influence of the glass-transition temperature and the chromophore content on the steady-state performance of PVK-based photorefractive polymers,” submitted to Adv. Mat. by R. Bittner, K. Meerholz.
  18. S. M. Silence, J. C. Scott, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Poly(siloxane)-based high-mobility photorefractive polymers,” J. Opt. Soc. Am. B 10, 2306–2312 (1993);S. M. Silence, J. C. Scott, J. J. Stankus, W. E. Moerner, C. R. Moylan, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopands,” J. Phys. Chem. 99, 4096–4105 (1995).
    [CrossRef]
  19. S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Quasinondestructive readout in a photorefractive polymer,” Phys. Rev. Lett. 73, 2047–2050 (1994).
    [CrossRef] [PubMed]
  20. K. Meerholz, R. Bittner, C. Bräuchle, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “Improved long-term stability of high performance photorefractive polymer devices,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme, J. W. Stasiak, eds., Proc. SPIE2850, 102–107 (1996).
    [CrossRef]
  21. H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2946 (1969).
  22. C. C. Teng, H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990);J. S. Schildkraut, “Determination of the electro-optical coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2941 (1990).
    [CrossRef] [PubMed]
  23. Sandalphon, B. Kippelen, K. Meerholz, N. Peyghambarian, “Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites,” Appl. Opt. 35, 2346–2354 (1996).
    [CrossRef]
  24. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. Part I. Steady state,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  25. J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. Am. B 8, 142–152 (1991).
    [CrossRef]
  26. M. G. Kuzyk, J. E. Sohn, C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–848 (1990).
    [CrossRef]
  27. H.-J. Winkelhahn, Th. K. Servay, D. Neher, “A novel concept for modelling the time-temperature dependence of polar order relaxation in nonlinear optical active polymers,” Ber. Bunsenges. Phys. Chem. 100, 123–131 (1996).
    [CrossRef]
  28. C. Burger, “Transformation von Relaxationsfunktinonen,” Ph.D. thesis (University of Marburg, Germany, 1994).
  29. G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, G. Hadziiaonnou, “Transient behaviour of photorefractive gratings in a polymer,” Appl. Phys. Lett. 67, 455–457 (1995);G. G. Malliaras, H. Angerman, V. V. Krasnikov, G. Ten Brinke, G. Hadziiaonnou, “The influence of disorder on the space charge field formation in photorefractive polymers,” J. Phys. D 29, 2045–2048 (1996).
    [CrossRef]
  30. M. C. J. M. Donckers, S. M. Silence, C. A. Walsh, F. Hache, D. M. Burland, W. E. Moerner, R. J. Twieg, “Net two-beam coupling gain in a polymeric photorefractive material,” Opt. Lett. 18, 1044–1046 (1993).
    [CrossRef] [PubMed]

1997 (4)

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “High-performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

F. Würthner, R. Wortmann, R. Matschiner, K. Lakaszuk, K. Meerholz, Y. De Nardin, R. Bittner, C. Bräuchle, R. Sens, “Merocyanine dyes in the cyanine limit: a new class of chromophores for photorefractive materials,” Angew. Chem. Int. Ed. Engl. 36, 2765–2768 (1997).
[CrossRef]

K. Meerholz, “Amorphous plastics pave the way for wide-spread holographic applications,” Angew. Chem. Int. Ed. Eng. 36, 945–948 (1997) and references therein.
[CrossRef]

B. Kippelen, F. Meyers, N. Peyghambarian, S. Marder, “Chromophore design for photorefractive applications,” J. Am. Chem. Soc. 119, 4559–4560 (1997).
[CrossRef]

1996 (7)

H. J. Bolink, V. V. Krasnikov, G. G. Malliaras, G. Hadziioannou, “Effect of plasticization on the performance of photorefractive polymers,” J. Phys. Chem. 100, 16356–16360 (1996).
[CrossRef]

Y. Zhang, R. Burzynski, S. Ghosal, M. K. Casstevens, “Photorefractive polymers and composites,” Adv. Mater. 8, 111–125 (1996) and references therein.
[CrossRef]

R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, D. M. Burland, “Design of optimized photorefractive polymers: a novel class of chromophores,” J. Chem. Phys. 105, 10637–10647 (1996).
[CrossRef]

A. M. Cox, R. D. Blackburn, D. P. West, T. A. King, F. A. Wade, D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1185 (1996).
[CrossRef] [PubMed]

Sandalphon, B. Kippelen, K. Meerholz, N. Peyghambarian, “Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites,” Appl. Opt. 35, 2346–2354 (1996).
[CrossRef]

H.-J. Winkelhahn, Th. K. Servay, D. Neher, “A novel concept for modelling the time-temperature dependence of polar order relaxation in nonlinear optical active polymers,” Ber. Bunsenges. Phys. Chem. 100, 123–131 (1996).
[CrossRef]

1995 (1)

G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, G. Hadziiaonnou, “Transient behaviour of photorefractive gratings in a polymer,” Appl. Phys. Lett. 67, 455–457 (1995);G. G. Malliaras, H. Angerman, V. V. Krasnikov, G. Ten Brinke, G. Hadziiaonnou, “The influence of disorder on the space charge field formation in photorefractive polymers,” J. Phys. D 29, 2045–2048 (1996).
[CrossRef]

1994 (4)

W. E. Moerner, S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–156 (1994) and references therein.
[CrossRef]

K. Meerholz, B. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
[CrossRef]

W. E. Moerner, S. M. Silence, F. Hache, G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 22, 320–330 (1994).
[CrossRef]

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Quasinondestructive readout in a photorefractive polymer,” Phys. Rev. Lett. 73, 2047–2050 (1994).
[CrossRef] [PubMed]

1993 (2)

S. M. Silence, J. C. Scott, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Poly(siloxane)-based high-mobility photorefractive polymers,” J. Opt. Soc. Am. B 10, 2306–2312 (1993);S. M. Silence, J. C. Scott, J. J. Stankus, W. E. Moerner, C. R. Moylan, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopands,” J. Phys. Chem. 99, 4096–4105 (1995).
[CrossRef]

M. C. J. M. Donckers, S. M. Silence, C. A. Walsh, F. Hache, D. M. Burland, W. E. Moerner, R. J. Twieg, “Net two-beam coupling gain in a polymeric photorefractive material,” Opt. Lett. 18, 1044–1046 (1993).
[CrossRef] [PubMed]

1991 (2)

J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. Am. B 8, 142–152 (1991).
[CrossRef]

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

1990 (3)

K. Sutter, J. Hulliger, P. Günter, “Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyano-quinodimethane,” J. Opt. Soc. Am. B 7, 2274–2278 (1990).
[CrossRef]

M. G. Kuzyk, J. E. Sohn, C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–848 (1990).
[CrossRef]

C. C. Teng, H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990);J. S. Schildkraut, “Determination of the electro-optical coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2941 (1990).
[CrossRef] [PubMed]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. Part I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

1969 (2)

F. S. Chen, “Optically-induced change of the refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3393 (1969).
[CrossRef]

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2946 (1969).

Bittner, R.

F. Würthner, R. Wortmann, R. Matschiner, K. Lakaszuk, K. Meerholz, Y. De Nardin, R. Bittner, C. Bräuchle, R. Sens, “Merocyanine dyes in the cyanine limit: a new class of chromophores for photorefractive materials,” Angew. Chem. Int. Ed. Engl. 36, 2765–2768 (1997).
[CrossRef]

Further information will be available in a paper entitled “Influence of the glass-transition temperature and the chromophore content on the steady-state performance of PVK-based photorefractive polymers,” submitted to Adv. Mat. by R. Bittner, K. Meerholz.

K. Meerholz, R. Bittner, C. Bräuchle, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “Improved long-term stability of high performance photorefractive polymer devices,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme, J. W. Stasiak, eds., Proc. SPIE2850, 102–107 (1996).
[CrossRef]

Bjorklund, G. C.

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Quasinondestructive readout in a photorefractive polymer,” Phys. Rev. Lett. 73, 2047–2050 (1994).
[CrossRef] [PubMed]

W. E. Moerner, S. M. Silence, F. Hache, G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 22, 320–330 (1994).
[CrossRef]

S. M. Silence, J. C. Scott, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Poly(siloxane)-based high-mobility photorefractive polymers,” J. Opt. Soc. Am. B 10, 2306–2312 (1993);S. M. Silence, J. C. Scott, J. J. Stankus, W. E. Moerner, C. R. Moylan, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopands,” J. Phys. Chem. 99, 4096–4105 (1995).
[CrossRef]

Blackburn, R. D.

A. M. Cox, R. D. Blackburn, D. P. West, T. A. King, F. A. Wade, D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

Bolink, H. J.

H. J. Bolink, V. V. Krasnikov, G. G. Malliaras, G. Hadziioannou, “Effect of plasticization on the performance of photorefractive polymers,” J. Phys. Chem. 100, 16356–16360 (1996).
[CrossRef]

G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, G. Hadziiaonnou, “Transient behaviour of photorefractive gratings in a polymer,” Appl. Phys. Lett. 67, 455–457 (1995);G. G. Malliaras, H. Angerman, V. V. Krasnikov, G. Ten Brinke, G. Hadziiaonnou, “The influence of disorder on the space charge field formation in photorefractive polymers,” J. Phys. D 29, 2045–2048 (1996).
[CrossRef]

Bräuchle, C.

F. Würthner, R. Wortmann, R. Matschiner, K. Lakaszuk, K. Meerholz, Y. De Nardin, R. Bittner, C. Bräuchle, R. Sens, “Merocyanine dyes in the cyanine limit: a new class of chromophores for photorefractive materials,” Angew. Chem. Int. Ed. Engl. 36, 2765–2768 (1997).
[CrossRef]

K. Meerholz, R. Bittner, C. Bräuchle, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “Improved long-term stability of high performance photorefractive polymer devices,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme, J. W. Stasiak, eds., Proc. SPIE2850, 102–107 (1996).
[CrossRef]

Burger, C.

C. Burger, “Transformation von Relaxationsfunktinonen,” Ph.D. thesis (University of Marburg, Germany, 1994).

Burland, D. M.

R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, D. M. Burland, “Design of optimized photorefractive polymers: a novel class of chromophores,” J. Chem. Phys. 105, 10637–10647 (1996).
[CrossRef]

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1185 (1996).
[CrossRef] [PubMed]

M. C. J. M. Donckers, S. M. Silence, C. A. Walsh, F. Hache, D. M. Burland, W. E. Moerner, R. J. Twieg, “Net two-beam coupling gain in a polymeric photorefractive material,” Opt. Lett. 18, 1044–1046 (1993).
[CrossRef] [PubMed]

Burzynski, R.

Y. Zhang, R. Burzynski, S. Ghosal, M. K. Casstevens, “Photorefractive polymers and composites,” Adv. Mater. 8, 111–125 (1996) and references therein.
[CrossRef]

Casstevens, M. K.

Y. Zhang, R. Burzynski, S. Ghosal, M. K. Casstevens, “Photorefractive polymers and composites,” Adv. Mater. 8, 111–125 (1996) and references therein.
[CrossRef]

Chen, F. S.

F. S. Chen, “Optically-induced change of the refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3393 (1969).
[CrossRef]

Cotts, P. M.

R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, D. M. Burland, “Design of optimized photorefractive polymers: a novel class of chromophores,” J. Chem. Phys. 105, 10637–10647 (1996).
[CrossRef]

Cox, A. M.

A. M. Cox, R. D. Blackburn, D. P. West, T. A. King, F. A. Wade, D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

De Nardin, Y.

F. Würthner, R. Wortmann, R. Matschiner, K. Lakaszuk, K. Meerholz, Y. De Nardin, R. Bittner, C. Bräuchle, R. Sens, “Merocyanine dyes in the cyanine limit: a new class of chromophores for photorefractive materials,” Angew. Chem. Int. Ed. Engl. 36, 2765–2768 (1997).
[CrossRef]

DeVoe, R. G.

R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, D. M. Burland, “Design of optimized photorefractive polymers: a novel class of chromophores,” J. Chem. Phys. 105, 10637–10647 (1996).
[CrossRef]

Dirk, C. W.

M. G. Kuzyk, J. E. Sohn, C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–848 (1990).
[CrossRef]

Donckers, M. C. J. M.

Ducharme, S.

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Geletneky, C.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1185 (1996).
[CrossRef] [PubMed]

R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, D. M. Burland, “Design of optimized photorefractive polymers: a novel class of chromophores,” J. Chem. Phys. 105, 10637–10647 (1996).
[CrossRef]

Ghosal, S.

Y. Zhang, R. Burzynski, S. Ghosal, M. K. Casstevens, “Photorefractive polymers and composites,” Adv. Mater. 8, 111–125 (1996) and references therein.
[CrossRef]

Ginsburg, E. J.

S. M. Silence, J. C. Scott, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Poly(siloxane)-based high-mobility photorefractive polymers,” J. Opt. Soc. Am. B 10, 2306–2312 (1993);S. M. Silence, J. C. Scott, J. J. Stankus, W. E. Moerner, C. R. Moylan, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopands,” J. Phys. Chem. 99, 4096–4105 (1995).
[CrossRef]

Grunnet-Jepsen, A.

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “High-performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

Günter, P.

K. Sutter, J. Hulliger, P. Günter, “Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyano-quinodimethane,” J. Opt. Soc. Am. B 7, 2274–2278 (1990).
[CrossRef]

Hache, F.

W. E. Moerner, S. M. Silence, F. Hache, G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 22, 320–330 (1994).
[CrossRef]

M. C. J. M. Donckers, S. M. Silence, C. A. Walsh, F. Hache, D. M. Burland, W. E. Moerner, R. J. Twieg, “Net two-beam coupling gain in a polymeric photorefractive material,” Opt. Lett. 18, 1044–1046 (1993).
[CrossRef] [PubMed]

Hadziiaonnou, G.

G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, G. Hadziiaonnou, “Transient behaviour of photorefractive gratings in a polymer,” Appl. Phys. Lett. 67, 455–457 (1995);G. G. Malliaras, H. Angerman, V. V. Krasnikov, G. Ten Brinke, G. Hadziiaonnou, “The influence of disorder on the space charge field formation in photorefractive polymers,” J. Phys. D 29, 2045–2048 (1996).
[CrossRef]

Hadziioannou, G.

H. J. Bolink, V. V. Krasnikov, G. G. Malliaras, G. Hadziioannou, “Effect of plasticization on the performance of photorefractive polymers,” J. Phys. Chem. 100, 16356–16360 (1996).
[CrossRef]

Horn, H.

R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, D. M. Burland, “Design of optimized photorefractive polymers: a novel class of chromophores,” J. Chem. Phys. 105, 10637–10647 (1996).
[CrossRef]

Hulliger, J.

K. Sutter, J. Hulliger, P. Günter, “Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyano-quinodimethane,” J. Opt. Soc. Am. B 7, 2274–2278 (1990).
[CrossRef]

Jenkner, P. K.

S. M. Silence, J. C. Scott, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Poly(siloxane)-based high-mobility photorefractive polymers,” J. Opt. Soc. Am. B 10, 2306–2312 (1993);S. M. Silence, J. C. Scott, J. J. Stankus, W. E. Moerner, C. R. Moylan, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopands,” J. Phys. Chem. 99, 4096–4105 (1995).
[CrossRef]

Jurich, M.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1185 (1996).
[CrossRef] [PubMed]

King, T. A.

A. M. Cox, R. D. Blackburn, D. P. West, T. A. King, F. A. Wade, D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

Kippelen, B.

B. Kippelen, F. Meyers, N. Peyghambarian, S. Marder, “Chromophore design for photorefractive applications,” J. Am. Chem. Soc. 119, 4559–4560 (1997).
[CrossRef]

Sandalphon, B. Kippelen, K. Meerholz, N. Peyghambarian, “Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites,” Appl. Opt. 35, 2346–2354 (1996).
[CrossRef]

K. Meerholz, B. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
[CrossRef]

B. Kippelen, K. Meerholz, N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalva, S. Miyata eds. (CRC, Boca Raton, Fla., 1997), Chap. 8, pp. 465–513, and references therein.

K. Meerholz, R. Bittner, C. Bräuchle, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “Improved long-term stability of high performance photorefractive polymer devices,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme, J. W. Stasiak, eds., Proc. SPIE2850, 102–107 (1996).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2946 (1969).

Krasnikov, V. V.

H. J. Bolink, V. V. Krasnikov, G. G. Malliaras, G. Hadziioannou, “Effect of plasticization on the performance of photorefractive polymers,” J. Phys. Chem. 100, 16356–16360 (1996).
[CrossRef]

G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, G. Hadziiaonnou, “Transient behaviour of photorefractive gratings in a polymer,” Appl. Phys. Lett. 67, 455–457 (1995);G. G. Malliaras, H. Angerman, V. V. Krasnikov, G. Ten Brinke, G. Hadziiaonnou, “The influence of disorder on the space charge field formation in photorefractive polymers,” J. Phys. D 29, 2045–2048 (1996).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. Part I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Kuzyk, M. G.

M. G. Kuzyk, J. E. Sohn, C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–848 (1990).
[CrossRef]

Lakaszuk, K.

F. Würthner, R. Wortmann, R. Matschiner, K. Lakaszuk, K. Meerholz, Y. De Nardin, R. Bittner, C. Bräuchle, R. Sens, “Merocyanine dyes in the cyanine limit: a new class of chromophores for photorefractive materials,” Angew. Chem. Int. Ed. Engl. 36, 2765–2768 (1997).
[CrossRef]

Lee, V. Y.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1185 (1996).
[CrossRef] [PubMed]

Leigh, D. A.

A. M. Cox, R. D. Blackburn, D. P. West, T. A. King, F. A. Wade, D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

Lundquist, P. M.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1185 (1996).
[CrossRef] [PubMed]

R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, D. M. Burland, “Design of optimized photorefractive polymers: a novel class of chromophores,” J. Chem. Phys. 105, 10637–10647 (1996).
[CrossRef]

Malliaras, G. G.

H. J. Bolink, V. V. Krasnikov, G. G. Malliaras, G. Hadziioannou, “Effect of plasticization on the performance of photorefractive polymers,” J. Phys. Chem. 100, 16356–16360 (1996).
[CrossRef]

G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, G. Hadziiaonnou, “Transient behaviour of photorefractive gratings in a polymer,” Appl. Phys. Lett. 67, 455–457 (1995);G. G. Malliaras, H. Angerman, V. V. Krasnikov, G. Ten Brinke, G. Hadziiaonnou, “The influence of disorder on the space charge field formation in photorefractive polymers,” J. Phys. D 29, 2045–2048 (1996).
[CrossRef]

Man, H. T.

C. C. Teng, H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990);J. S. Schildkraut, “Determination of the electro-optical coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2941 (1990).
[CrossRef] [PubMed]

Marder, S.

B. Kippelen, F. Meyers, N. Peyghambarian, S. Marder, “Chromophore design for photorefractive applications,” J. Am. Chem. Soc. 119, 4559–4560 (1997).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. Part I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Matschiner, R.

F. Würthner, R. Wortmann, R. Matschiner, K. Lakaszuk, K. Meerholz, Y. De Nardin, R. Bittner, C. Bräuchle, R. Sens, “Merocyanine dyes in the cyanine limit: a new class of chromophores for photorefractive materials,” Angew. Chem. Int. Ed. Engl. 36, 2765–2768 (1997).
[CrossRef]

Meerholz, K.

K. Meerholz, “Amorphous plastics pave the way for wide-spread holographic applications,” Angew. Chem. Int. Ed. Eng. 36, 945–948 (1997) and references therein.
[CrossRef]

F. Würthner, R. Wortmann, R. Matschiner, K. Lakaszuk, K. Meerholz, Y. De Nardin, R. Bittner, C. Bräuchle, R. Sens, “Merocyanine dyes in the cyanine limit: a new class of chromophores for photorefractive materials,” Angew. Chem. Int. Ed. Engl. 36, 2765–2768 (1997).
[CrossRef]

Sandalphon, B. Kippelen, K. Meerholz, N. Peyghambarian, “Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites,” Appl. Opt. 35, 2346–2354 (1996).
[CrossRef]

K. Meerholz, B. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
[CrossRef]

B. Kippelen, K. Meerholz, N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalva, S. Miyata eds. (CRC, Boca Raton, Fla., 1997), Chap. 8, pp. 465–513, and references therein.

K. Meerholz, R. Bittner, C. Bräuchle, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “Improved long-term stability of high performance photorefractive polymer devices,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme, J. W. Stasiak, eds., Proc. SPIE2850, 102–107 (1996).
[CrossRef]

Further information will be available in a paper entitled “Influence of the glass-transition temperature and the chromophore content on the steady-state performance of PVK-based photorefractive polymers,” submitted to Adv. Mat. by R. Bittner, K. Meerholz.

Meyers, F.

B. Kippelen, F. Meyers, N. Peyghambarian, S. Marder, “Chromophore design for photorefractive applications,” J. Am. Chem. Soc. 119, 4559–4560 (1997).
[CrossRef]

Miller, R. D.

S. M. Silence, J. C. Scott, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Poly(siloxane)-based high-mobility photorefractive polymers,” J. Opt. Soc. Am. B 10, 2306–2312 (1993);S. M. Silence, J. C. Scott, J. J. Stankus, W. E. Moerner, C. R. Moylan, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopands,” J. Phys. Chem. 99, 4096–4105 (1995).
[CrossRef]

Moerner, W. E.

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “High-performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

W. E. Moerner, S. M. Silence, F. Hache, G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 22, 320–330 (1994).
[CrossRef]

W. E. Moerner, S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–156 (1994) and references therein.
[CrossRef]

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Quasinondestructive readout in a photorefractive polymer,” Phys. Rev. Lett. 73, 2047–2050 (1994).
[CrossRef] [PubMed]

S. M. Silence, J. C. Scott, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Poly(siloxane)-based high-mobility photorefractive polymers,” J. Opt. Soc. Am. B 10, 2306–2312 (1993);S. M. Silence, J. C. Scott, J. J. Stankus, W. E. Moerner, C. R. Moylan, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopands,” J. Phys. Chem. 99, 4096–4105 (1995).
[CrossRef]

M. C. J. M. Donckers, S. M. Silence, C. A. Walsh, F. Hache, D. M. Burland, W. E. Moerner, R. J. Twieg, “Net two-beam coupling gain in a polymeric photorefractive material,” Opt. Lett. 18, 1044–1046 (1993).
[CrossRef] [PubMed]

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Moylan, C. R.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1185 (1996).
[CrossRef] [PubMed]

R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, D. M. Burland, “Design of optimized photorefractive polymers: a novel class of chromophores,” J. Chem. Phys. 105, 10637–10647 (1996).
[CrossRef]

Neher, D.

H.-J. Winkelhahn, Th. K. Servay, D. Neher, “A novel concept for modelling the time-temperature dependence of polar order relaxation in nonlinear optical active polymers,” Ber. Bunsenges. Phys. Chem. 100, 123–131 (1996).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. Part I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Peyghambarian, N.

B. Kippelen, F. Meyers, N. Peyghambarian, S. Marder, “Chromophore design for photorefractive applications,” J. Am. Chem. Soc. 119, 4559–4560 (1997).
[CrossRef]

Sandalphon, B. Kippelen, K. Meerholz, N. Peyghambarian, “Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites,” Appl. Opt. 35, 2346–2354 (1996).
[CrossRef]

K. Meerholz, B. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
[CrossRef]

B. Kippelen, K. Meerholz, N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalva, S. Miyata eds. (CRC, Boca Raton, Fla., 1997), Chap. 8, pp. 465–513, and references therein.

K. Meerholz, R. Bittner, C. Bräuchle, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “Improved long-term stability of high performance photorefractive polymer devices,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme, J. W. Stasiak, eds., Proc. SPIE2850, 102–107 (1996).
[CrossRef]

Poga, C.

R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, D. M. Burland, “Design of optimized photorefractive polymers: a novel class of chromophores,” J. Chem. Phys. 105, 10637–10647 (1996).
[CrossRef]

Rice, J. E.

R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, D. M. Burland, “Design of optimized photorefractive polymers: a novel class of chromophores,” J. Chem. Phys. 105, 10637–10647 (1996).
[CrossRef]

Sandalphon,

Sandalphon, B. Kippelen, K. Meerholz, N. Peyghambarian, “Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites,” Appl. Opt. 35, 2346–2354 (1996).
[CrossRef]

K. Meerholz, B. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
[CrossRef]

K. Meerholz, R. Bittner, C. Bräuchle, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “Improved long-term stability of high performance photorefractive polymer devices,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme, J. W. Stasiak, eds., Proc. SPIE2850, 102–107 (1996).
[CrossRef]

Scott, J. C.

S. M. Silence, J. C. Scott, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Poly(siloxane)-based high-mobility photorefractive polymers,” J. Opt. Soc. Am. B 10, 2306–2312 (1993);S. M. Silence, J. C. Scott, J. J. Stankus, W. E. Moerner, C. R. Moylan, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopands,” J. Phys. Chem. 99, 4096–4105 (1995).
[CrossRef]

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Sens, R.

F. Würthner, R. Wortmann, R. Matschiner, K. Lakaszuk, K. Meerholz, Y. De Nardin, R. Bittner, C. Bräuchle, R. Sens, “Merocyanine dyes in the cyanine limit: a new class of chromophores for photorefractive materials,” Angew. Chem. Int. Ed. Engl. 36, 2765–2768 (1997).
[CrossRef]

Servay, Th. K.

H.-J. Winkelhahn, Th. K. Servay, D. Neher, “A novel concept for modelling the time-temperature dependence of polar order relaxation in nonlinear optical active polymers,” Ber. Bunsenges. Phys. Chem. 100, 123–131 (1996).
[CrossRef]

Silence, S. M.

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Quasinondestructive readout in a photorefractive polymer,” Phys. Rev. Lett. 73, 2047–2050 (1994).
[CrossRef] [PubMed]

W. E. Moerner, S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–156 (1994) and references therein.
[CrossRef]

W. E. Moerner, S. M. Silence, F. Hache, G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 22, 320–330 (1994).
[CrossRef]

S. M. Silence, J. C. Scott, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Poly(siloxane)-based high-mobility photorefractive polymers,” J. Opt. Soc. Am. B 10, 2306–2312 (1993);S. M. Silence, J. C. Scott, J. J. Stankus, W. E. Moerner, C. R. Moylan, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopands,” J. Phys. Chem. 99, 4096–4105 (1995).
[CrossRef]

M. C. J. M. Donckers, S. M. Silence, C. A. Walsh, F. Hache, D. M. Burland, W. E. Moerner, R. J. Twieg, “Net two-beam coupling gain in a polymeric photorefractive material,” Opt. Lett. 18, 1044–1046 (1993).
[CrossRef] [PubMed]

Sohn, J. E.

M. G. Kuzyk, J. E. Sohn, C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–848 (1990).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. Part I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Sutter, K.

K. Sutter, J. Hulliger, P. Günter, “Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyano-quinodimethane,” J. Opt. Soc. Am. B 7, 2274–2278 (1990).
[CrossRef]

Teng, C. C.

C. C. Teng, H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990);J. S. Schildkraut, “Determination of the electro-optical coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2941 (1990).
[CrossRef] [PubMed]

Thompson, C. L.

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “High-performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

Twieg, R. J.

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “High-performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1185 (1996).
[CrossRef] [PubMed]

R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, D. M. Burland, “Design of optimized photorefractive polymers: a novel class of chromophores,” J. Chem. Phys. 105, 10637–10647 (1996).
[CrossRef]

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Quasinondestructive readout in a photorefractive polymer,” Phys. Rev. Lett. 73, 2047–2050 (1994).
[CrossRef] [PubMed]

S. M. Silence, J. C. Scott, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Poly(siloxane)-based high-mobility photorefractive polymers,” J. Opt. Soc. Am. B 10, 2306–2312 (1993);S. M. Silence, J. C. Scott, J. J. Stankus, W. E. Moerner, C. R. Moylan, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopands,” J. Phys. Chem. 99, 4096–4105 (1995).
[CrossRef]

M. C. J. M. Donckers, S. M. Silence, C. A. Walsh, F. Hache, D. M. Burland, W. E. Moerner, R. J. Twieg, “Net two-beam coupling gain in a polymeric photorefractive material,” Opt. Lett. 18, 1044–1046 (1993).
[CrossRef] [PubMed]

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. Part I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Volodin, B.

K. Meerholz, B. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
[CrossRef]

Volodin, B. L.

K. Meerholz, R. Bittner, C. Bräuchle, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “Improved long-term stability of high performance photorefractive polymer devices,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme, J. W. Stasiak, eds., Proc. SPIE2850, 102–107 (1996).
[CrossRef]

Wade, F. A.

A. M. Cox, R. D. Blackburn, D. P. West, T. A. King, F. A. Wade, D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

Walsh, C. A.

West, D. P.

A. M. Cox, R. D. Blackburn, D. P. West, T. A. King, F. A. Wade, D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

Winkelhahn, H.-J.

H.-J. Winkelhahn, Th. K. Servay, D. Neher, “A novel concept for modelling the time-temperature dependence of polar order relaxation in nonlinear optical active polymers,” Ber. Bunsenges. Phys. Chem. 100, 123–131 (1996).
[CrossRef]

Wortmann, R.

F. Würthner, R. Wortmann, R. Matschiner, K. Lakaszuk, K. Meerholz, Y. De Nardin, R. Bittner, C. Bräuchle, R. Sens, “Merocyanine dyes in the cyanine limit: a new class of chromophores for photorefractive materials,” Angew. Chem. Int. Ed. Engl. 36, 2765–2768 (1997).
[CrossRef]

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1185 (1996).
[CrossRef] [PubMed]

R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, D. M. Burland, “Design of optimized photorefractive polymers: a novel class of chromophores,” J. Chem. Phys. 105, 10637–10647 (1996).
[CrossRef]

Wu, J. W.

Würthner, F.

F. Würthner, R. Wortmann, R. Matschiner, K. Lakaszuk, K. Meerholz, Y. De Nardin, R. Bittner, C. Bräuchle, R. Sens, “Merocyanine dyes in the cyanine limit: a new class of chromophores for photorefractive materials,” Angew. Chem. Int. Ed. Engl. 36, 2765–2768 (1997).
[CrossRef]

Zhang, Y.

Y. Zhang, R. Burzynski, S. Ghosal, M. K. Casstevens, “Photorefractive polymers and composites,” Adv. Mater. 8, 111–125 (1996) and references therein.
[CrossRef]

Adv. Mater. (1)

Y. Zhang, R. Burzynski, S. Ghosal, M. K. Casstevens, “Photorefractive polymers and composites,” Adv. Mater. 8, 111–125 (1996) and references therein.
[CrossRef]

Angew. Chem. Int. Ed. Eng. (1)

K. Meerholz, “Amorphous plastics pave the way for wide-spread holographic applications,” Angew. Chem. Int. Ed. Eng. 36, 945–948 (1997) and references therein.
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

F. Würthner, R. Wortmann, R. Matschiner, K. Lakaszuk, K. Meerholz, Y. De Nardin, R. Bittner, C. Bräuchle, R. Sens, “Merocyanine dyes in the cyanine limit: a new class of chromophores for photorefractive materials,” Angew. Chem. Int. Ed. Engl. 36, 2765–2768 (1997).
[CrossRef]

Appl. Opt. (1)

Sandalphon, B. Kippelen, K. Meerholz, N. Peyghambarian, “Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites,” Appl. Opt. 35, 2346–2354 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

C. C. Teng, H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990);J. S. Schildkraut, “Determination of the electro-optical coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2941 (1990).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, G. Hadziiaonnou, “Transient behaviour of photorefractive gratings in a polymer,” Appl. Phys. Lett. 67, 455–457 (1995);G. G. Malliaras, H. Angerman, V. V. Krasnikov, G. Ten Brinke, G. Hadziiaonnou, “The influence of disorder on the space charge field formation in photorefractive polymers,” J. Phys. D 29, 2045–2048 (1996).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “High-performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
[CrossRef]

A. M. Cox, R. D. Blackburn, D. P. West, T. A. King, F. A. Wade, D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2946 (1969).

Ber. Bunsenges. Phys. Chem. (1)

H.-J. Winkelhahn, Th. K. Servay, D. Neher, “A novel concept for modelling the time-temperature dependence of polar order relaxation in nonlinear optical active polymers,” Ber. Bunsenges. Phys. Chem. 100, 123–131 (1996).
[CrossRef]

Chem. Rev. (1)

W. E. Moerner, S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–156 (1994) and references therein.
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. Part I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

J. Am. Chem. Soc. (1)

B. Kippelen, F. Meyers, N. Peyghambarian, S. Marder, “Chromophore design for photorefractive applications,” J. Am. Chem. Soc. 119, 4559–4560 (1997).
[CrossRef]

J. Appl. Phys. (1)

F. S. Chen, “Optically-induced change of the refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3393 (1969).
[CrossRef]

J. Chem. Phys. (1)

R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, D. M. Burland, “Design of optimized photorefractive polymers: a novel class of chromophores,” J. Chem. Phys. 105, 10637–10647 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

M. G. Kuzyk, J. E. Sohn, C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–848 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

K. Sutter, J. Hulliger, P. Günter, “Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyano-quinodimethane,” J. Opt. Soc. Am. B 7, 2274–2278 (1990).
[CrossRef]

S. M. Silence, J. C. Scott, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Poly(siloxane)-based high-mobility photorefractive polymers,” J. Opt. Soc. Am. B 10, 2306–2312 (1993);S. M. Silence, J. C. Scott, J. J. Stankus, W. E. Moerner, C. R. Moylan, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopands,” J. Phys. Chem. 99, 4096–4105 (1995).
[CrossRef]

J. Opt. Soc. Am. B (2)

W. E. Moerner, S. M. Silence, F. Hache, G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 22, 320–330 (1994).
[CrossRef]

J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. Am. B 8, 142–152 (1991).
[CrossRef]

J. Phys. Chem. (1)

H. J. Bolink, V. V. Krasnikov, G. G. Malliaras, G. Hadziioannou, “Effect of plasticization on the performance of photorefractive polymers,” J. Phys. Chem. 100, 16356–16360 (1996).
[CrossRef]

Nature (1)

K. Meerholz, B. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
[CrossRef] [PubMed]

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Quasinondestructive readout in a photorefractive polymer,” Phys. Rev. Lett. 73, 2047–2050 (1994).
[CrossRef] [PubMed]

Science (1)

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1185 (1996).
[CrossRef] [PubMed]

Other (4)

K. Meerholz, R. Bittner, C. Bräuchle, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “Improved long-term stability of high performance photorefractive polymer devices,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme, J. W. Stasiak, eds., Proc. SPIE2850, 102–107 (1996).
[CrossRef]

Further information will be available in a paper entitled “Influence of the glass-transition temperature and the chromophore content on the steady-state performance of PVK-based photorefractive polymers,” submitted to Adv. Mat. by R. Bittner, K. Meerholz.

B. Kippelen, K. Meerholz, N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalva, S. Miyata eds. (CRC, Boca Raton, Fla., 1997), Chap. 8, pp. 465–513, and references therein.

C. Burger, “Transformation von Relaxationsfunktinonen,” Ph.D. thesis (University of Marburg, Germany, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental geometry of DFWM experiments.

Fig. 2
Fig. 2

Field dependence of the internal diffraction efficiency η for composite 40c.

Fig. 3
Fig. 3

Dependence of the time constants τ1 (filled symbols) and τ2 (open symbols) used in the biexponential fitting function [Eq. (12)] on the glass-transition temperature T g for different chromophore concentrations: 30 wt. % (triangles), 40 wt. % (circles), and 50 wt. % (squares). (a) Logarithmic plot. (b) Linear plot. The marked temperature range indicates the measurement temperature. The lines are a guide to the eye.

Fig. 4
Fig. 4

Time dependence of the diffraction efficiency in a DFWM experiment (fwm) and the transmission in an ellipsometric (ellp) experiment for two materials with identical chromophore content and different glass-transition temperatures: (a) 50e. (b) 50c. (See Table 1).

Fig. 5
Fig. 5

Dependence of the pre-exponential factors A 1 (filled symbols) and A 2 (open symbols) used in the biexponential fitting function [Eq. (12)] on the glass-transition temperature for different chromophore concentrations: 30 wt. % (triangles, dotted lines), 40 wt. % (circles, dashed lines), and 50 wt. % (squares, solid lines). The lines are linear fits.

Fig. 6
Fig. 6

Dependence of the average response times 〈τ〉 on the glass-transition temperature for different chromophore concentrations: 30 wt. % (triangles), 40 wt. % (circles), and 50 wt. % (squares). (a) Logarithmic plot. (b) Linear plot. The lines are guides to the eye.

Tables (1)

Tables Icon

Table 1 Glass-Transition Temperatures of Composites Containing x-wt. % DMNPAA, y-wt. % ECZ, 1-wt. % TNF, and (100-x-y-1)-wt. % PVK as Measured by Differential Scanning Calorimetry

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

η int = I R ,   diffracted I R ,   diffracted + I R ,   transmitted .
η sin 2 C DFWM Δ n .
T = sin 2 C ELLP n p - n s ,
Δ n Z , EO = N β 333 μ 10 nk B T E P 2 ,
Δ n Z , BR = N Δ α ω μ 2 45 nk B 2 T 2 E P 2 .
Δ n Z , BR ω t = 2 π N Δ α ω n × 2 i 2 x 3 i 0 x 1 - exp - D 2 t - xi 1 x 5 i 0 x exp - D 1 t - exp - D 2 t + 2 xi 3 x 15 i 0 x exp - D 2 t - exp - D 3 t .
D n = n n + 1 D ,
x = E · μ k B T .
Δ n Z , BR ω t     2 i 2 x 3 i 0 x - 2 i 2 x 3 i 0 x - xi 1 x 5 i 0 x × exp - D 2 t - xi 1 x 5 i 0 x exp - D 1 t ,
Δ n Z , BR ω t     a 1 1 - exp - D 1 t + a 2 1 - exp - D 2 t ,
a 1 = xi 1 x / 5 i 0 x , a 2 = 2 i 2 x / 3 i 0 x - xi 1 x / 5 i 0 x .
η t     sin 2 A 1 1 - exp - D 1 t + A 2 1 - exp - D 2 t .
a   sin η int , max - a   sin η int t = A 1   exp - t / τ 1 + A 2 exp - t / τ 2 .
ln   τ = m 1 = - ln τ ρ ln τ d ln τ ,
τ = τ 0 exp - E A T - T g k B T .
ln   τ = A 1 ln   τ 1 + A 2 ln   τ 2 .
ln   τ KWW = β - 1 - 1 Π 1 + ln   τ KWW ,

Metrics