Abstract

Routine clinical detection of precancerous lesions by laser-induced autofluorescence was recently demonstrated in several medical fields. This technique is based on the analysis of complex spectra with overlapping broad structures. However, in biological tissues, scattering and absorption are wavelength dependent, and the observed fluorescence signals are distorted when the illumination and detection geometry varies, making comparison of results from different groups difficult. We study this phenomenon experimentally in human tissue in a simple experiment: A fiber is used for the excitation and an identical fiber is used for reception of the signal; both fibers are maintained in contact with the tissue. We study the distortion of the spectra as a function of the distance between the two fibers. For correction of the spectra we show that it is possible to use a fast and accurate ab initio Monte Carlo simulation when the spectral variations of the optical properties of the medium are known. The main advantage of this simulation is its applicability even for complex boundary conditions or when the sample consists of several layers.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For an extensive bibliography, see, for example, R. R. Alfano, G. C. Pradham, G. C. Tang, B. B. Das, K. M. Yoo , “Optical spectroscopy may offer novel diagnostic approaches for the medical profession,” in Laser Non-Surgical Medicine: New Challenges for an Old Application, L. Goldman , ed. (Technomic, Lancaster, Pa., 1991).
  2. P. S. Andersson, A. Gustafson, U. Stenram, K. Svanberg, S. Svanberg, “Diagnosis of arterial atherosclerosis using laser induced fluorescence,” Laser Med. Sci. 2, 261–266 (1987).
    [CrossRef]
  3. T. G. Papazoglou, K. Arakawa, W. S. Grundfest, T. Papaioannou, M. Fishbein, F. Litvack, “Laser induced autofluorescence versus exogenous chemical probe induced fluorescence as an arterial layer detection method. A comparative study,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. SPIE1201, 16–26 (1990).
    [CrossRef]
  4. S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991).
    [PubMed]
  5. J. Hung, S. Lam, J. C. Le Riche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
    [CrossRef] [PubMed]
  6. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
    [CrossRef] [PubMed]
  7. Z. Z. Huang, W. S. Glassman, G. C. Tang, S. Lubicz, R. R. Alfano, “Fluorescence diagnosis of gynecological cancerous and normal tissues,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 42–45 (1994).
    [CrossRef]
  8. M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
    [CrossRef] [PubMed]
  9. M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandschamps, A. Cortesse, P. Teillac, A. Le Duc, S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
    [CrossRef] [PubMed]
  10. See, for example, D. Braichotte, G. Wagnières, R. Bays, Ph. Monnier, H. van den Bergh , “Clinical pharmacokinetic studies of Photofrin by fluorescence spectroscopy in the oral cavity, the esophagus and the bronchi,” Cancer 75, 2768–2778 (1995).
  11. T. J. Dougherty, M. Cooper, T. S. Mang, “Cutaneous phototoxic occurrences in patients receiving Photofrin,” Lasers Surg. Med. 10, 485–493 (1990).
    [CrossRef] [PubMed]
  12. J. J. Baraga, R. P. Rava, P. Taroni, C. Kittrel, M. Fitzmaurice, M. S. Feld, “Laser induced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306–310 nm excitation,” Lasers Surg. Med. 10, 245–261 (1990).
    [CrossRef]
  13. B. Chance, P. Cohen, F. Jöbsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962).
    [CrossRef] [PubMed]
  14. A. Mayevsky, “Brain NADH redox state monitored in vivo by fibre optic surface fluorometry,” Brain Res. Rev. 7, 49–54 (1984).
    [CrossRef]
  15. R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence. Is it due to flavins?” J. Histochem. Cytochem. 27, 44–58 (1979).
    [CrossRef] [PubMed]
  16. B. Chance, B. Schoener, “Fluorometric studies of flavin component of the respiratory chain,” in Flavins and Flavoproteins, E. C. Slater, ed. (Elsevier, New York, 1966), pp. 510–519.
  17. B. B. Das, K. M. Yoo, F. Liu, J. Cleary, R. Prudente, E. Celmer, R. R. Alfano, “Spectral optical-density measurements of small particles and breast tissues,” Appl. Opt. 32, 549–552 (1993).
    [CrossRef] [PubMed]
  18. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  19. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt. 28, 2318–2324 (1989).
    [CrossRef] [PubMed]
  20. A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–36 (1995).
    [CrossRef]
  21. H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbergs, W. Hogervorst, “Spectral dependence of the optical properties of human brain,” Laser Med. Sci. 4, 221–227 (1989).
    [CrossRef]
  22. E. Tinet, S. Avrillier, D. Ettori, P. Van Der Zee, J. P. Ollivier, “Monte-Carlo evaluation of laser-induced fluorescence spectra modifications due to optical properties of the medium: application to real spectra correction,” in Optical Biopsy, R. Cubeddu, S. Svanberg, H. van den Bergh, eds., Proc. SPIE2081, 129–136 (1994).
    [CrossRef]
  23. J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
    [CrossRef] [PubMed]
  24. A. J. Durkin, S. Jaikumar, N. Ramanujam, R. Richards-Kortrum, “Relation between fluorescence spectra of dilute and turbid samples,” Appl. Opt. 33, 414–423 (1994).
    [CrossRef] [PubMed]
  25. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissue,” Appl. Opt. 33, 1963–1974 (1994).
    [CrossRef] [PubMed]
  26. C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
    [CrossRef] [PubMed]
  27. E. Tinet, S. Avrillier, J. M. Tualle, “Fast semi-analytical Monte Carlo simulation for time resolved light propagation in turbid media,” J. Opt. Soc. Am. A 13, 1903–1915 (1996).
    [CrossRef]
  28. B. Gélébart, E. Tinet, J. M. Tualle, S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996).
    [CrossRef]
  29. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1995), Chap. 12, p. 496.
  30. G. Allègre, S. Avrillier, D. Albe-Fessard, “Stimulation of a nerve fibre bundle by a short UV pulse from an excimer laser,” Neurosci. Lett. 180, 261–264 (1994).
    [CrossRef] [PubMed]
  31. M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
    [CrossRef] [PubMed]

1996 (6)

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandschamps, A. Cortesse, P. Teillac, A. Le Duc, S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[CrossRef] [PubMed]

C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
[CrossRef] [PubMed]

E. Tinet, S. Avrillier, J. M. Tualle, “Fast semi-analytical Monte Carlo simulation for time resolved light propagation in turbid media,” J. Opt. Soc. Am. A 13, 1903–1915 (1996).
[CrossRef]

B. Gélébart, E. Tinet, J. M. Tualle, S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996).
[CrossRef]

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

1995 (1)

See, for example, D. Braichotte, G. Wagnières, R. Bays, Ph. Monnier, H. van den Bergh , “Clinical pharmacokinetic studies of Photofrin by fluorescence spectroscopy in the oral cavity, the esophagus and the bronchi,” Cancer 75, 2768–2778 (1995).

1994 (3)

1993 (2)

1992 (1)

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

1991 (2)

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991).
[PubMed]

J. Hung, S. Lam, J. C. Le Riche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

1990 (3)

T. J. Dougherty, M. Cooper, T. S. Mang, “Cutaneous phototoxic occurrences in patients receiving Photofrin,” Lasers Surg. Med. 10, 485–493 (1990).
[CrossRef] [PubMed]

J. J. Baraga, R. P. Rava, P. Taroni, C. Kittrel, M. Fitzmaurice, M. S. Feld, “Laser induced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306–310 nm excitation,” Lasers Surg. Med. 10, 245–261 (1990).
[CrossRef]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989 (2)

R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt. 28, 2318–2324 (1989).
[CrossRef] [PubMed]

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbergs, W. Hogervorst, “Spectral dependence of the optical properties of human brain,” Laser Med. Sci. 4, 221–227 (1989).
[CrossRef]

1987 (1)

P. S. Andersson, A. Gustafson, U. Stenram, K. Svanberg, S. Svanberg, “Diagnosis of arterial atherosclerosis using laser induced fluorescence,” Laser Med. Sci. 2, 261–266 (1987).
[CrossRef]

1984 (1)

A. Mayevsky, “Brain NADH redox state monitored in vivo by fibre optic surface fluorometry,” Brain Res. Rev. 7, 49–54 (1984).
[CrossRef]

1979 (1)

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence. Is it due to flavins?” J. Histochem. Cytochem. 27, 44–58 (1979).
[CrossRef] [PubMed]

1962 (1)

B. Chance, P. Cohen, F. Jöbsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962).
[CrossRef] [PubMed]

Albe-Fessard, D.

G. Allègre, S. Avrillier, D. Albe-Fessard, “Stimulation of a nerve fibre bundle by a short UV pulse from an excimer laser,” Neurosci. Lett. 180, 261–264 (1994).
[CrossRef] [PubMed]

Albrecht, H.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–36 (1995).
[CrossRef]

Alfano, R. R.

B. B. Das, K. M. Yoo, F. Liu, J. Cleary, R. Prudente, E. Celmer, R. R. Alfano, “Spectral optical-density measurements of small particles and breast tissues,” Appl. Opt. 32, 549–552 (1993).
[CrossRef] [PubMed]

Z. Z. Huang, W. S. Glassman, G. C. Tang, S. Lubicz, R. R. Alfano, “Fluorescence diagnosis of gynecological cancerous and normal tissues,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 42–45 (1994).
[CrossRef]

For an extensive bibliography, see, for example, R. R. Alfano, G. C. Pradham, G. C. Tang, B. B. Das, K. M. Yoo , “Optical spectroscopy may offer novel diagnostic approaches for the medical profession,” in Laser Non-Surgical Medicine: New Challenges for an Old Application, L. Goldman , ed. (Technomic, Lancaster, Pa., 1991).

Allègre, G.

G. Allègre, S. Avrillier, D. Albe-Fessard, “Stimulation of a nerve fibre bundle by a short UV pulse from an excimer laser,” Neurosci. Lett. 180, 261–264 (1994).
[CrossRef] [PubMed]

Andersson, P. S.

P. S. Andersson, A. Gustafson, U. Stenram, K. Svanberg, S. Svanberg, “Diagnosis of arterial atherosclerosis using laser induced fluorescence,” Laser Med. Sci. 2, 261–266 (1987).
[CrossRef]

Andersson-Engels, S.

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991).
[PubMed]

Andreola, S.

Anidjar, M.

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandschamps, A. Cortesse, P. Teillac, A. Le Duc, S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[CrossRef] [PubMed]

Arakawa, K.

T. G. Papazoglou, K. Arakawa, W. S. Grundfest, T. Papaioannou, M. Fishbein, F. Litvack, “Laser induced autofluorescence versus exogenous chemical probe induced fluorescence as an arterial layer detection method. A comparative study,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. SPIE1201, 16–26 (1990).
[CrossRef]

Avrillier, S.

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandschamps, A. Cortesse, P. Teillac, A. Le Duc, S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[CrossRef] [PubMed]

B. Gélébart, E. Tinet, J. M. Tualle, S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996).
[CrossRef]

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

E. Tinet, S. Avrillier, J. M. Tualle, “Fast semi-analytical Monte Carlo simulation for time resolved light propagation in turbid media,” J. Opt. Soc. Am. A 13, 1903–1915 (1996).
[CrossRef]

G. Allègre, S. Avrillier, D. Albe-Fessard, “Stimulation of a nerve fibre bundle by a short UV pulse from an excimer laser,” Neurosci. Lett. 180, 261–264 (1994).
[CrossRef] [PubMed]

E. Tinet, S. Avrillier, D. Ettori, P. Van Der Zee, J. P. Ollivier, “Monte-Carlo evaluation of laser-induced fluorescence spectra modifications due to optical properties of the medium: application to real spectra correction,” in Optical Biopsy, R. Cubeddu, S. Svanberg, H. van den Bergh, eds., Proc. SPIE2081, 129–136 (1994).
[CrossRef]

Baraga, J. J.

J. J. Baraga, R. P. Rava, P. Taroni, C. Kittrel, M. Fitzmaurice, M. S. Feld, “Laser induced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306–310 nm excitation,” Lasers Surg. Med. 10, 245–261 (1990).
[CrossRef]

Bays, R.

See, for example, D. Braichotte, G. Wagnières, R. Bays, Ph. Monnier, H. van den Bergh , “Clinical pharmacokinetic studies of Photofrin by fluorescence spectroscopy in the oral cavity, the esophagus and the bronchi,” Cancer 75, 2768–2778 (1995).

Benson, R. C.

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence. Is it due to flavins?” J. Histochem. Cytochem. 27, 44–58 (1979).
[CrossRef] [PubMed]

Bertoni, A.

Braichotte, D.

See, for example, D. Braichotte, G. Wagnières, R. Bays, Ph. Monnier, H. van den Bergh , “Clinical pharmacokinetic studies of Photofrin by fluorescence spectroscopy in the oral cavity, the esophagus and the bronchi,” Cancer 75, 2768–2778 (1995).

Celmer, E.

Chance, B.

B. Chance, P. Cohen, F. Jöbsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962).
[CrossRef] [PubMed]

B. Chance, B. Schoener, “Fluorometric studies of flavin component of the respiratory chain,” in Flavins and Flavoproteins, E. C. Slater, ed. (Elsevier, New York, 1966), pp. 510–519.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Cleary, J.

Cohen, P.

B. Chance, P. Cohen, F. Jöbsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962).
[CrossRef] [PubMed]

Compton, C. C.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Cooper, M.

T. J. Dougherty, M. Cooper, T. S. Mang, “Cutaneous phototoxic occurrences in patients receiving Photofrin,” Lasers Surg. Med. 10, 485–493 (1990).
[CrossRef] [PubMed]

Cortesse, A.

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandschamps, A. Cortesse, P. Teillac, A. Le Duc, S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[CrossRef] [PubMed]

Cussenot, O.

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandschamps, A. Cortesse, P. Teillac, A. Le Duc, S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[CrossRef] [PubMed]

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

Das, B. B.

B. B. Das, K. M. Yoo, F. Liu, J. Cleary, R. Prudente, E. Celmer, R. R. Alfano, “Spectral optical-density measurements of small particles and breast tissues,” Appl. Opt. 32, 549–552 (1993).
[CrossRef] [PubMed]

For an extensive bibliography, see, for example, R. R. Alfano, G. C. Pradham, G. C. Tang, B. B. Das, K. M. Yoo , “Optical spectroscopy may offer novel diagnostic approaches for the medical profession,” in Laser Non-Surgical Medicine: New Challenges for an Old Application, L. Goldman , ed. (Technomic, Lancaster, Pa., 1991).

Desgrandschamps, F.

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandschamps, A. Cortesse, P. Teillac, A. Le Duc, S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[CrossRef] [PubMed]

Deutsch, T. F.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Dörschel, K.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–36 (1995).
[CrossRef]

Dougherty, T. J.

T. J. Dougherty, M. Cooper, T. S. Mang, “Cutaneous phototoxic occurrences in patients receiving Photofrin,” Lasers Surg. Med. 10, 485–493 (1990).
[CrossRef] [PubMed]

Durkin, A. J.

Ettori, D.

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandschamps, A. Cortesse, P. Teillac, A. Le Duc, S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[CrossRef] [PubMed]

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

E. Tinet, S. Avrillier, D. Ettori, P. Van Der Zee, J. P. Ollivier, “Monte-Carlo evaluation of laser-induced fluorescence spectra modifications due to optical properties of the medium: application to real spectra correction,” in Optical Biopsy, R. Cubeddu, S. Svanberg, H. van den Bergh, eds., Proc. SPIE2081, 129–136 (1994).
[CrossRef]

Feld, M. S.

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
[CrossRef] [PubMed]

J. J. Baraga, R. P. Rava, P. Taroni, C. Kittrel, M. Fitzmaurice, M. S. Feld, “Laser induced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306–310 nm excitation,” Lasers Surg. Med. 10, 245–261 (1990).
[CrossRef]

Fiet, J.

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

Fishbein, M.

T. G. Papazoglou, K. Arakawa, W. S. Grundfest, T. Papaioannou, M. Fishbein, F. Litvack, “Laser induced autofluorescence versus exogenous chemical probe induced fluorescence as an arterial layer detection method. A comparative study,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. SPIE1201, 16–26 (1990).
[CrossRef]

Fitzmaurice, M.

J. J. Baraga, R. P. Rava, P. Taroni, C. Kittrel, M. Fitzmaurice, M. S. Feld, “Laser induced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306–310 nm excitation,” Lasers Surg. Med. 10, 245–261 (1990).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1995), Chap. 12, p. 496.

Flotte, T. J.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Frisoli, J. K.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Gardner, C. M.

Gélébart, B.

B. Gélébart, E. Tinet, J. M. Tualle, S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996).
[CrossRef]

Glassman, W. S.

Z. Z. Huang, W. S. Glassman, G. C. Tang, S. Lubicz, R. R. Alfano, “Fluorescence diagnosis of gynecological cancerous and normal tissues,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 42–45 (1994).
[CrossRef]

Grundfest, W. S.

T. G. Papazoglou, K. Arakawa, W. S. Grundfest, T. Papaioannou, M. Fishbein, F. Litvack, “Laser induced autofluorescence versus exogenous chemical probe induced fluorescence as an arterial layer detection method. A comparative study,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. SPIE1201, 16–26 (1990).
[CrossRef]

Gustafson, A.

P. S. Andersson, A. Gustafson, U. Stenram, K. Svanberg, S. Svanberg, “Diagnosis of arterial atherosclerosis using laser induced fluorescence,” Laser Med. Sci. 2, 261–266 (1987).
[CrossRef]

Hogervorst, W.

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbergs, W. Hogervorst, “Spectral dependence of the optical properties of human brain,” Laser Med. Sci. 4, 221–227 (1989).
[CrossRef]

Huang, Z. Z.

Z. Z. Huang, W. S. Glassman, G. C. Tang, S. Lubicz, R. R. Alfano, “Fluorescence diagnosis of gynecological cancerous and normal tissues,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 42–45 (1994).
[CrossRef]

Hung, J.

J. Hung, S. Lam, J. C. Le Riche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

Jacques, S. L.

Jaikumar, S.

Jöbsis, F.

B. Chance, P. Cohen, F. Jöbsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962).
[CrossRef] [PubMed]

Johansson, J.

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991).
[PubMed]

Kamphorst, W.

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbergs, W. Hogervorst, “Spectral dependence of the optical properties of human brain,” Laser Med. Sci. 4, 221–227 (1989).
[CrossRef]

Kittrel, C.

J. J. Baraga, R. P. Rava, P. Taroni, C. Kittrel, M. Fitzmaurice, M. S. Feld, “Laser induced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306–310 nm excitation,” Lasers Surg. Med. 10, 245–261 (1990).
[CrossRef]

Lam, S.

J. Hung, S. Lam, J. C. Le Riche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

Le Duc, A.

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandschamps, A. Cortesse, P. Teillac, A. Le Duc, S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[CrossRef] [PubMed]

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

Le Riche, J. C.

J. Hung, S. Lam, J. C. Le Riche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

Litvack, F.

T. G. Papazoglou, K. Arakawa, W. S. Grundfest, T. Papaioannou, M. Fishbein, F. Litvack, “Laser induced autofluorescence versus exogenous chemical probe induced fluorescence as an arterial layer detection method. A comparative study,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. SPIE1201, 16–26 (1990).
[CrossRef]

Liu, F.

Lubicz, S.

Z. Z. Huang, W. S. Glassman, G. C. Tang, S. Lubicz, R. R. Alfano, “Fluorescence diagnosis of gynecological cancerous and normal tissues,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 42–45 (1994).
[CrossRef]

Mang, T. S.

T. J. Dougherty, M. Cooper, T. S. Mang, “Cutaneous phototoxic occurrences in patients receiving Photofrin,” Lasers Surg. Med. 10, 485–493 (1990).
[CrossRef] [PubMed]

Marchesini, R.

Mayevsky, A.

A. Mayevsky, “Brain NADH redox state monitored in vivo by fibre optic surface fluorometry,” Brain Res. Rev. 7, 49–54 (1984).
[CrossRef]

McKhann, G. M.

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence. Is it due to flavins?” J. Histochem. Cytochem. 27, 44–58 (1979).
[CrossRef] [PubMed]

Melloni, E.

Meria, P.

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandschamps, A. Cortesse, P. Teillac, A. Le Duc, S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[CrossRef] [PubMed]

Meyer, R. A.

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence. Is it due to flavins?” J. Histochem. Cytochem. 27, 44–58 (1979).
[CrossRef] [PubMed]

Minet, O.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–36 (1995).
[CrossRef]

Monnier, Ph.

See, for example, D. Braichotte, G. Wagnières, R. Bays, Ph. Monnier, H. van den Bergh , “Clinical pharmacokinetic studies of Photofrin by fluorescence spectroscopy in the oral cavity, the esophagus and the bronchi,” Cancer 75, 2768–2778 (1995).

Müller, G.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–36 (1995).
[CrossRef]

Nishioka, N. S.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Ollivier, J. P.

E. Tinet, S. Avrillier, D. Ettori, P. Van Der Zee, J. P. Ollivier, “Monte-Carlo evaluation of laser-induced fluorescence spectra modifications due to optical properties of the medium: application to real spectra correction,” in Optical Biopsy, R. Cubeddu, S. Svanberg, H. van den Bergh, eds., Proc. SPIE2081, 129–136 (1994).
[CrossRef]

Palcic, B.

J. Hung, S. Lam, J. C. Le Riche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

Papaioannou, T.

T. G. Papazoglou, K. Arakawa, W. S. Grundfest, T. Papaioannou, M. Fishbein, F. Litvack, “Laser induced autofluorescence versus exogenous chemical probe induced fluorescence as an arterial layer detection method. A comparative study,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. SPIE1201, 16–26 (1990).
[CrossRef]

Papazoglou, T. G.

T. G. Papazoglou, K. Arakawa, W. S. Grundfest, T. Papaioannou, M. Fishbein, F. Litvack, “Laser induced autofluorescence versus exogenous chemical probe induced fluorescence as an arterial layer detection method. A comparative study,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. SPIE1201, 16–26 (1990).
[CrossRef]

Patterson, M. S.

Pogue, B. W.

Pradham, G. C.

For an extensive bibliography, see, for example, R. R. Alfano, G. C. Pradham, G. C. Tang, B. B. Das, K. M. Yoo , “Optical spectroscopy may offer novel diagnostic approaches for the medical profession,” in Laser Non-Surgical Medicine: New Challenges for an Old Application, L. Goldman , ed. (Technomic, Lancaster, Pa., 1991).

Prahl, S. A.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1995), Chap. 12, p. 496.

Prudente, R.

Ramanujam, N.

Rava, R. P.

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
[CrossRef] [PubMed]

J. J. Baraga, R. P. Rava, P. Taroni, C. Kittrel, M. Fitzmaurice, M. S. Feld, “Laser induced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306–310 nm excitation,” Lasers Surg. Med. 10, 245–261 (1990).
[CrossRef]

Richards-Kortrum, R.

Richter, J. M.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Roggan, A.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–36 (1995).
[CrossRef]

Schoener, B.

B. Chance, P. Cohen, F. Jöbsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962).
[CrossRef] [PubMed]

B. Chance, B. Schoener, “Fluorometric studies of flavin component of the respiratory chain,” in Flavins and Flavoproteins, E. C. Slater, ed. (Elsevier, New York, 1966), pp. 510–519.

Schomacker, K. T.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Sichirollo, A. E.

Stenram, U.

P. S. Andersson, A. Gustafson, U. Stenram, K. Svanberg, S. Svanberg, “Diagnosis of arterial atherosclerosis using laser induced fluorescence,” Laser Med. Sci. 2, 261–266 (1987).
[CrossRef]

Sterenborg, H. J. C. M.

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbergs, W. Hogervorst, “Spectral dependence of the optical properties of human brain,” Laser Med. Sci. 4, 221–227 (1989).
[CrossRef]

Svanberg, K.

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991).
[PubMed]

P. S. Andersson, A. Gustafson, U. Stenram, K. Svanberg, S. Svanberg, “Diagnosis of arterial atherosclerosis using laser induced fluorescence,” Laser Med. Sci. 2, 261–266 (1987).
[CrossRef]

Svanberg, S.

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991).
[PubMed]

P. S. Andersson, A. Gustafson, U. Stenram, K. Svanberg, S. Svanberg, “Diagnosis of arterial atherosclerosis using laser induced fluorescence,” Laser Med. Sci. 2, 261–266 (1987).
[CrossRef]

Tang, G. C.

Z. Z. Huang, W. S. Glassman, G. C. Tang, S. Lubicz, R. R. Alfano, “Fluorescence diagnosis of gynecological cancerous and normal tissues,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 42–45 (1994).
[CrossRef]

For an extensive bibliography, see, for example, R. R. Alfano, G. C. Pradham, G. C. Tang, B. B. Das, K. M. Yoo , “Optical spectroscopy may offer novel diagnostic approaches for the medical profession,” in Laser Non-Surgical Medicine: New Challenges for an Old Application, L. Goldman , ed. (Technomic, Lancaster, Pa., 1991).

Taroni, P.

J. J. Baraga, R. P. Rava, P. Taroni, C. Kittrel, M. Fitzmaurice, M. S. Feld, “Laser induced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306–310 nm excitation,” Lasers Surg. Med. 10, 245–261 (1990).
[CrossRef]

Teillac, P.

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandschamps, A. Cortesse, P. Teillac, A. Le Duc, S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[CrossRef] [PubMed]

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1995), Chap. 12, p. 496.

Tinet, E.

E. Tinet, S. Avrillier, J. M. Tualle, “Fast semi-analytical Monte Carlo simulation for time resolved light propagation in turbid media,” J. Opt. Soc. Am. A 13, 1903–1915 (1996).
[CrossRef]

B. Gélébart, E. Tinet, J. M. Tualle, S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996).
[CrossRef]

E. Tinet, S. Avrillier, D. Ettori, P. Van Der Zee, J. P. Ollivier, “Monte-Carlo evaluation of laser-induced fluorescence spectra modifications due to optical properties of the medium: application to real spectra correction,” in Optical Biopsy, R. Cubeddu, S. Svanberg, H. van den Bergh, eds., Proc. SPIE2081, 129–136 (1994).
[CrossRef]

Tualle, J. M.

E. Tinet, S. Avrillier, J. M. Tualle, “Fast semi-analytical Monte Carlo simulation for time resolved light propagation in turbid media,” J. Opt. Soc. Am. A 13, 1903–1915 (1996).
[CrossRef]

B. Gélébart, E. Tinet, J. M. Tualle, S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996).
[CrossRef]

van den Bergh, H.

See, for example, D. Braichotte, G. Wagnières, R. Bays, Ph. Monnier, H. van den Bergh , “Clinical pharmacokinetic studies of Photofrin by fluorescence spectroscopy in the oral cavity, the esophagus and the bronchi,” Cancer 75, 2768–2778 (1995).

Van Der Zee, P.

E. Tinet, S. Avrillier, D. Ettori, P. Van Der Zee, J. P. Ollivier, “Monte-Carlo evaluation of laser-induced fluorescence spectra modifications due to optical properties of the medium: application to real spectra correction,” in Optical Biopsy, R. Cubeddu, S. Svanberg, H. van den Bergh, eds., Proc. SPIE2081, 129–136 (1994).
[CrossRef]

van Gemert, M. J. C.

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbergs, W. Hogervorst, “Spectral dependence of the optical properties of human brain,” Laser Med. Sci. 4, 221–227 (1989).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1995), Chap. 12, p. 496.

Villette, J. M.

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

Wagnières, G.

See, for example, D. Braichotte, G. Wagnières, R. Bays, Ph. Monnier, H. van den Bergh , “Clinical pharmacokinetic studies of Photofrin by fluorescence spectroscopy in the oral cavity, the esophagus and the bronchi,” Cancer 75, 2768–2778 (1995).

Welch, A. J.

C. M. Gardner, S. L. Jacques, A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35, 1780–1792 (1996).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wolbergs, J. G.

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbergs, W. Hogervorst, “Spectral dependence of the optical properties of human brain,” Laser Med. Sci. 4, 221–227 (1989).
[CrossRef]

Wu, J.

Yoo, K. M.

B. B. Das, K. M. Yoo, F. Liu, J. Cleary, R. Prudente, E. Celmer, R. R. Alfano, “Spectral optical-density measurements of small particles and breast tissues,” Appl. Opt. 32, 549–552 (1993).
[CrossRef] [PubMed]

For an extensive bibliography, see, for example, R. R. Alfano, G. C. Pradham, G. C. Tang, B. B. Das, K. M. Yoo , “Optical spectroscopy may offer novel diagnostic approaches for the medical profession,” in Laser Non-Surgical Medicine: New Challenges for an Old Application, L. Goldman , ed. (Technomic, Lancaster, Pa., 1991).

Zaruba, M. E.

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence. Is it due to flavins?” J. Histochem. Cytochem. 27, 44–58 (1979).
[CrossRef] [PubMed]

Appl. Opt. (6)

Brain Res. Rev. (1)

A. Mayevsky, “Brain NADH redox state monitored in vivo by fibre optic surface fluorometry,” Brain Res. Rev. 7, 49–54 (1984).
[CrossRef]

Cancer (1)

See, for example, D. Braichotte, G. Wagnières, R. Bays, Ph. Monnier, H. van den Bergh , “Clinical pharmacokinetic studies of Photofrin by fluorescence spectroscopy in the oral cavity, the esophagus and the bronchi,” Cancer 75, 2768–2778 (1995).

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

J. Biomed. Opt. (2)

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

M. Anidjar, O. Cussenot, S. Avrillier, D. Ettori, J. M. Villette, J. Fiet, P. Teillac, A. Le Duc, “Ultra-violet laser induced autofluorescence distinction between malignant and normal urothelial cells and tissues,” J. Biomed. Opt. 1, 335–341 (1996).
[CrossRef] [PubMed]

J. Histochem. Cytochem. (1)

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence. Is it due to flavins?” J. Histochem. Cytochem. 27, 44–58 (1979).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Urol. (1)

M. Anidjar, D. Ettori, O. Cussenot, P. Meria, F. Desgrandschamps, A. Cortesse, P. Teillac, A. Le Duc, S. Avrillier, “Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength,” J. Urol. 156, 1590–1596 (1996).
[CrossRef] [PubMed]

Laser Med. Sci. (2)

P. S. Andersson, A. Gustafson, U. Stenram, K. Svanberg, S. Svanberg, “Diagnosis of arterial atherosclerosis using laser induced fluorescence,” Laser Med. Sci. 2, 261–266 (1987).
[CrossRef]

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbergs, W. Hogervorst, “Spectral dependence of the optical properties of human brain,” Laser Med. Sci. 4, 221–227 (1989).
[CrossRef]

Lasers Surg. Med. (4)

J. Hung, S. Lam, J. C. Le Riche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991).
[CrossRef] [PubMed]

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

T. J. Dougherty, M. Cooper, T. S. Mang, “Cutaneous phototoxic occurrences in patients receiving Photofrin,” Lasers Surg. Med. 10, 485–493 (1990).
[CrossRef] [PubMed]

J. J. Baraga, R. P. Rava, P. Taroni, C. Kittrel, M. Fitzmaurice, M. S. Feld, “Laser induced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306–310 nm excitation,” Lasers Surg. Med. 10, 245–261 (1990).
[CrossRef]

Neurosci. Lett. (1)

G. Allègre, S. Avrillier, D. Albe-Fessard, “Stimulation of a nerve fibre bundle by a short UV pulse from an excimer laser,” Neurosci. Lett. 180, 261–264 (1994).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991).
[PubMed]

Pure Appl. Opt. (1)

B. Gélébart, E. Tinet, J. M. Tualle, S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996).
[CrossRef]

Science (1)

B. Chance, P. Cohen, F. Jöbsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962).
[CrossRef] [PubMed]

Other (7)

B. Chance, B. Schoener, “Fluorometric studies of flavin component of the respiratory chain,” in Flavins and Flavoproteins, E. C. Slater, ed. (Elsevier, New York, 1966), pp. 510–519.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. Müller, “Experimental set-up and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–36 (1995).
[CrossRef]

For an extensive bibliography, see, for example, R. R. Alfano, G. C. Pradham, G. C. Tang, B. B. Das, K. M. Yoo , “Optical spectroscopy may offer novel diagnostic approaches for the medical profession,” in Laser Non-Surgical Medicine: New Challenges for an Old Application, L. Goldman , ed. (Technomic, Lancaster, Pa., 1991).

T. G. Papazoglou, K. Arakawa, W. S. Grundfest, T. Papaioannou, M. Fishbein, F. Litvack, “Laser induced autofluorescence versus exogenous chemical probe induced fluorescence as an arterial layer detection method. A comparative study,” in Optical Fibers in Medicine V, A. Katzir, ed., Proc. SPIE1201, 16–26 (1990).
[CrossRef]

Z. Z. Huang, W. S. Glassman, G. C. Tang, S. Lubicz, R. R. Alfano, “Fluorescence diagnosis of gynecological cancerous and normal tissues,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 42–45 (1994).
[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1995), Chap. 12, p. 496.

E. Tinet, S. Avrillier, D. Ettori, P. Van Der Zee, J. P. Ollivier, “Monte-Carlo evaluation of laser-induced fluorescence spectra modifications due to optical properties of the medium: application to real spectra correction,” in Optical Biopsy, R. Cubeddu, S. Svanberg, H. van den Bergh, eds., Proc. SPIE2081, 129–136 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Part Φ(λ e , λ n ) of the excitation-light absorbed energy P abs is a source for the fluorescence light at the wavelength λ n . Spectra are sampled by N fluorescence wavelengths. Notice that Φ(λ e , λ n ) is a multiplying factor in the final result concerning λ n .

Fig. 2
Fig. 2

Calculated volume map of the excitation-light absorbed energy per unit volume in a semi-infinite human-brain white-matter sample (λ e = 308 nm). The optical coefficients used for the calculation are μ a (308 nm) = 1.35 mm-1, μ s (308 nm) = 38 mm-1, and g (308 nm) = 0.94. The energy is given in arbitrary units. From O, each change of area corresponds to a decrease of the absorbed energy by a factor of 10.

Fig. 3
Fig. 3

Fluorescence intensity I f produced by a fluorophore located at z = 0.41/μ s , z = 4/μ s , or z = 40/μ s . The results are presented in units of 1/μ s for various values of the albedo ω0 = μ s /(μ s + μ a ) and for g = 0.94.

Fig. 4
Fig. 4

200-μm fibers are used for excitation and for reception of the signal. These two fibers are placed in contact with the tissue, and the distance d between the two fibers is varied.

Fig. 5
Fig. 5

In vitro autofluorescence spectra of human-brain white matter for three distances d between the excitation and the reception fibers. The excitation wavelength is 308 nm. Multiplying factors (4.5 and 9) are used in the intensity display for better visibility of the two spectra corresponding to d = 500 μm and d = 750 μm.

Fig. 6
Fig. 6

Medium function M(308 nm, λ, d), in arbitrary units, calculated for a semi-infinite human-brain white-matter sample for an excitation emitting point (NA, 0.22) and a fluorescence receiving point (NA, 0.22) separated by a distance d. The spectral range was sampled every 25 nm. The distance d between the two points varies in 100-μm steps from 0 to 1.5 mm.

Fig. 7
Fig. 7

Medium function M(308 nm, λ, d), in arbitrary units, calculated for human-brain white matter for an excitation-emitting point (NA, 0.22) and a fluorescence-receiving point (NA, 0.22) separated by a distance d. The spectral range was sampled every 25 nm. The distance d between the two points varies in 100-μm steps from 0 to 1.5 mm. The decreasing exponential behavior for large d can easily be observed from this three-dimensional representation.

Fig. 8
Fig. 8

Corrected in vitro autofluorescence spectra of human-brain white matter for 308-nm excitation at three distances between the excitation and the reception fibers. The spectra have been divided by the calculated medium function corresponding to the distance used between two excitation and reception fibers.

Fig. 9
Fig. 9

Medium function calculated for human-brain white matter when a single 200-μm fiber is used for the excitation at 308 nm and the fluorescence detection. The NA of the fibers is 0.22.

Fig. 10
Fig. 10

Medium function calculated for human-brain white matter when a single 1-mm fiber is used for the excitation at 308 nm and the fluorescence detection. The numerical aperture of the fibers is 0.22.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F λ e ,   λ ,   G = P 0 Φ λ e ,   λ M λ e ,   λ ,   G ,
F λ e ,   λ n ,   G = M λ e ,   λ n ,   G
u n = 1 μ s λ n 1 - g 0 1 - g λ n .
I fn r ,   z = 1 / u n 2 0   I f r 0 ,   z 0 ,   L 0 exp - μ a λ n L 0 u n d L 0 .

Metrics