Abstract

Nonlinearities of the responsivity of various types of silicon photodetectors have been studied. These detectors are based on photodiodes with two sizes of the active area (10 × 10 mm2 and 18 × 18 mm2). The detector configurations investigated include single photodiodes, two reflection trap detectors, and a transmission trap detector. For all devices, the measured nonlinearity was less than 2 × 10-4 for photocurrents up to 200 μA. The diameter of the measurement beam was found to have an effect on the nonlinearity. The measured nonlinearity of the trap detectors depends on the polarization state of the incident beam. The responsivity of the photodetectors consisting of the large-area photodiodes reached saturation at higher photocurrent values compared with the devices based on the photodiodes with smaller active area.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Zalewski, C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983).
    [CrossRef] [PubMed]
  2. N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
    [CrossRef]
  3. R. Köhler, R. Goebel, R. Pello, “Results of an international comparison of spectral responsivity of silicon photodetectors,” Metrologia 32, 463–468 (1995/96).
    [CrossRef]
  4. A. Lassila, H. Hofer, E. Ikonen, L. Liedquist, K. D. Stock, T. Varpula, “Intercomparison of cryogenic radiometers using silicon trap detectors,” Meas. Sci. Technol. 8, 123–127 (1997).
    [CrossRef]
  5. D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 μm,” Metrologia 30, 425–432 (1993).
    [CrossRef]
  6. T. R. Gentile, S. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using NIST high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4392–4403 (1996).
    [CrossRef] [PubMed]
  7. E. Ikonen, P. Kärhä, A. Lassila, F. Manoochehri, H. Fagerlund, L. Liedquist, “Radiometric realization of the candela with a trap detector,” Metrologia 32, 689–692 (1995/96).
    [CrossRef]
  8. R. J. Bruening, “Spectral irradiance scales based on filtered absolute silicon photodetectors,” Appl. Opt. 26, 1051–1057 (1987).
    [CrossRef] [PubMed]
  9. P. Kärhä, P. Toivanen, F. Manoochehri, E. Ikonen, “Development of a detector-based absolute spectral irradiance scale in the 380–900-nm spectral range,” Appl. Opt. 36, 8909–8918 (1997).
    [CrossRef]
  10. B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
    [CrossRef]
  11. J. L. Gardner, “Transmission trap detectors,” Appl. Opt. 25, 5914–5918 (1994).
    [CrossRef]
  12. J. L. Gardner, “A four-element transmission trap detector,” Metrologia 32, 469–472 (1995/96).
    [CrossRef]
  13. T. Kübarsepp, P. Kärhä, E. Ikonen, “Characterization of a polarization-independent transmission trap detector,” Appl. Opt. 36, 2807–2812 (1997).
    [CrossRef] [PubMed]
  14. L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355–360 (1993).
    [CrossRef]
  15. J. Fischer, L. Fu, “Photodiode nonlinearity measurement with an intensity stabilized laser as a radiation source,” Appl. Opt. 32, 4187–4190 (1993).
    [CrossRef] [PubMed]
  16. R. Köhler, R. Pello, J. Bonhoure, “Temperature dependent nonlinearity effects of a QED-200 detector in the visible,” Appl. Opt. 29, 4212–4215 (1990).
    [CrossRef] [PubMed]
  17. W. Budde, Optical Radiation Measurements: Physical Detectors of Optical Radiation, Vol. 4 (Academic, New York, 1983), pp. 247–261.
  18. Hamamatsu Photonics K. K., Hamamatsu City, Japan.
  19. K. Seeger, Semiconductor Physics (Springer–Verlag, New York, 1978), pp. 128–144, 420–425.

1997 (3)

1996 (1)

1994 (1)

J. L. Gardner, “Transmission trap detectors,” Appl. Opt. 25, 5914–5918 (1994).
[CrossRef]

1993 (4)

L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355–360 (1993).
[CrossRef]

J. Fischer, L. Fu, “Photodiode nonlinearity measurement with an intensity stabilized laser as a radiation source,” Appl. Opt. 32, 4187–4190 (1993).
[CrossRef] [PubMed]

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 μm,” Metrologia 30, 425–432 (1993).
[CrossRef]

1991 (1)

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

1990 (1)

1987 (1)

1983 (1)

Boivin, L. P.

L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355–360 (1993).
[CrossRef]

Bonhoure, J.

Bruening, R. J.

Budde, W.

W. Budde, Optical Radiation Measurements: Physical Detectors of Optical Radiation, Vol. 4 (Academic, New York, 1983), pp. 247–261.

Cromer, C. L.

T. R. Gentile, S. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using NIST high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4392–4403 (1996).
[CrossRef] [PubMed]

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Dezsi, G.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Duda, C. R.

Eppeldauer, G.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Fagerlund, H.

E. Ikonen, P. Kärhä, A. Lassila, F. Manoochehri, H. Fagerlund, L. Liedquist, “Radiometric realization of the candela with a trap detector,” Metrologia 32, 689–692 (1995/96).
[CrossRef]

Fischer, J.

Fowler, J.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Fox, N. P.

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

Fu, L.

Gardner, J. L.

J. L. Gardner, “A four-element transmission trap detector,” Metrologia 32, 469–472 (1995/96).
[CrossRef]

J. L. Gardner, “Transmission trap detectors,” Appl. Opt. 25, 5914–5918 (1994).
[CrossRef]

Gentile, T. R.

Goebel, R.

R. Köhler, R. Goebel, R. Pello, “Results of an international comparison of spectral responsivity of silicon photodetectors,” Metrologia 32, 463–468 (1995/96).
[CrossRef]

Hofer, H.

A. Lassila, H. Hofer, E. Ikonen, L. Liedquist, K. D. Stock, T. Varpula, “Intercomparison of cryogenic radiometers using silicon trap detectors,” Meas. Sci. Technol. 8, 123–127 (1997).
[CrossRef]

Houston, S. M.

Ikonen, E.

P. Kärhä, P. Toivanen, F. Manoochehri, E. Ikonen, “Development of a detector-based absolute spectral irradiance scale in the 380–900-nm spectral range,” Appl. Opt. 36, 8909–8918 (1997).
[CrossRef]

A. Lassila, H. Hofer, E. Ikonen, L. Liedquist, K. D. Stock, T. Varpula, “Intercomparison of cryogenic radiometers using silicon trap detectors,” Meas. Sci. Technol. 8, 123–127 (1997).
[CrossRef]

T. Kübarsepp, P. Kärhä, E. Ikonen, “Characterization of a polarization-independent transmission trap detector,” Appl. Opt. 36, 2807–2812 (1997).
[CrossRef] [PubMed]

E. Ikonen, P. Kärhä, A. Lassila, F. Manoochehri, H. Fagerlund, L. Liedquist, “Radiometric realization of the candela with a trap detector,” Metrologia 32, 689–692 (1995/96).
[CrossRef]

Johnson, B. C.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Kärhä, P.

Köhler, R.

R. Köhler, R. Goebel, R. Pello, “Results of an international comparison of spectral responsivity of silicon photodetectors,” Metrologia 32, 463–468 (1995/96).
[CrossRef]

R. Köhler, R. Pello, J. Bonhoure, “Temperature dependent nonlinearity effects of a QED-200 detector in the visible,” Appl. Opt. 29, 4212–4215 (1990).
[CrossRef] [PubMed]

Kübarsepp, T.

Lassila, A.

A. Lassila, H. Hofer, E. Ikonen, L. Liedquist, K. D. Stock, T. Varpula, “Intercomparison of cryogenic radiometers using silicon trap detectors,” Meas. Sci. Technol. 8, 123–127 (1997).
[CrossRef]

E. Ikonen, P. Kärhä, A. Lassila, F. Manoochehri, H. Fagerlund, L. Liedquist, “Radiometric realization of the candela with a trap detector,” Metrologia 32, 689–692 (1995/96).
[CrossRef]

Liedquist, L.

A. Lassila, H. Hofer, E. Ikonen, L. Liedquist, K. D. Stock, T. Varpula, “Intercomparison of cryogenic radiometers using silicon trap detectors,” Meas. Sci. Technol. 8, 123–127 (1997).
[CrossRef]

E. Ikonen, P. Kärhä, A. Lassila, F. Manoochehri, H. Fagerlund, L. Liedquist, “Radiometric realization of the candela with a trap detector,” Metrologia 32, 689–692 (1995/96).
[CrossRef]

Manoochehri, F.

P. Kärhä, P. Toivanen, F. Manoochehri, E. Ikonen, “Development of a detector-based absolute spectral irradiance scale in the 380–900-nm spectral range,” Appl. Opt. 36, 8909–8918 (1997).
[CrossRef]

E. Ikonen, P. Kärhä, A. Lassila, F. Manoochehri, H. Fagerlund, L. Liedquist, “Radiometric realization of the candela with a trap detector,” Metrologia 32, 689–692 (1995/96).
[CrossRef]

Nettleton, D. H.

D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 μm,” Metrologia 30, 425–432 (1993).
[CrossRef]

Pello, R.

R. Köhler, R. Goebel, R. Pello, “Results of an international comparison of spectral responsivity of silicon photodetectors,” Metrologia 32, 463–468 (1995/96).
[CrossRef]

R. Köhler, R. Pello, J. Bonhoure, “Temperature dependent nonlinearity effects of a QED-200 detector in the visible,” Appl. Opt. 29, 4212–4215 (1990).
[CrossRef] [PubMed]

Prior, T. R.

D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 μm,” Metrologia 30, 425–432 (1993).
[CrossRef]

Sapritsky, V. I.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Saunders, R. D.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Seeger, K.

K. Seeger, Semiconductor Physics (Springer–Verlag, New York, 1978), pp. 128–144, 420–425.

Stock, K. D.

A. Lassila, H. Hofer, E. Ikonen, L. Liedquist, K. D. Stock, T. Varpula, “Intercomparison of cryogenic radiometers using silicon trap detectors,” Meas. Sci. Technol. 8, 123–127 (1997).
[CrossRef]

Toivanen, P.

Varpula, T.

A. Lassila, H. Hofer, E. Ikonen, L. Liedquist, K. D. Stock, T. Varpula, “Intercomparison of cryogenic radiometers using silicon trap detectors,” Meas. Sci. Technol. 8, 123–127 (1997).
[CrossRef]

Ward, T. H.

D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 μm,” Metrologia 30, 425–432 (1993).
[CrossRef]

Zalewski, E. F.

Appl. Opt. (8)

Meas. Sci. Technol. (1)

A. Lassila, H. Hofer, E. Ikonen, L. Liedquist, K. D. Stock, T. Varpula, “Intercomparison of cryogenic radiometers using silicon trap detectors,” Meas. Sci. Technol. 8, 123–127 (1997).
[CrossRef]

Metrologia (7)

D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 μm,” Metrologia 30, 425–432 (1993).
[CrossRef]

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

R. Köhler, R. Goebel, R. Pello, “Results of an international comparison of spectral responsivity of silicon photodetectors,” Metrologia 32, 463–468 (1995/96).
[CrossRef]

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

E. Ikonen, P. Kärhä, A. Lassila, F. Manoochehri, H. Fagerlund, L. Liedquist, “Radiometric realization of the candela with a trap detector,” Metrologia 32, 689–692 (1995/96).
[CrossRef]

L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355–360 (1993).
[CrossRef]

J. L. Gardner, “A four-element transmission trap detector,” Metrologia 32, 469–472 (1995/96).
[CrossRef]

Other (3)

W. Budde, Optical Radiation Measurements: Physical Detectors of Optical Radiation, Vol. 4 (Academic, New York, 1983), pp. 247–261.

Hamamatsu Photonics K. K., Hamamatsu City, Japan.

K. Seeger, Semiconductor Physics (Springer–Verlag, New York, 1978), pp. 128–144, 420–425.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Outline of the measurement setup with argon-ion laser: ID, iris diaphragms; EOM, electro-optical modulator; FDU, feedback detector unit; NDF, neutral density filters; and P, polarizer.

Fig. 2
Fig. 2

Measured (diamond and square symbols) and interpolated (curves) nonlinearities of the detectors based on photodiodes with an active area of 10 × 10 mm2 at two different wavelengths. The diameter of the laser beams was 1.5 mm: (a) single photodiode, (b) reflection trap detector, (c) transmission trap detector, and (d) the fitted curves in one plot: single photodiode (dotted curve), reflection trap detector (dashed curve), and transmission trap detector (solid curve). Curves indicate fitted functions of the nonlinearity described in Subsection 2.D. Bars represent the standard deviations of the nonlinearity values.

Fig. 3
Fig. 3

Measured (cross and circle symbols) and interpolated (curves) nonlinearities of the reflection trap detector based on photodiodes with an active area of 10 × 10 mm2 at two different beam polarizations. The wavelength was 633 nm and the diameter of the laser beams was 1.5 mm. The s polarization of the measurement beam (crosses) means perpendicular, and the p polarization (circles) parallel polarization with respect to the plane of incidence of the first photodiode in the device. Curves indicate fitted functions of the nonlinearity described in Subsection 2.D. The measurement uncertainty is smaller than the size of either the cross or the circle symbols.

Fig. 4
Fig. 4

Measured (diamonds) and interpolated (curves) nonlinearities of the detectors based on photodiodes with an active area of 10 × 10 mm2 at a 633-nm laser wavelength. The diameter of the laser beam was 5 mm: (a) single photodiode (diamonds), interpolation of the nonlinearity of the 5-mm-diameter beam (solid curve), and interpolation of the 1.5-mm-diameter beam (dotted curve) has been included for comparison; (b) reflection trap detector, interpolation of the nonlinearity of the 5-mm-diameter beam (solid curve), and interpolation of the 1.5-mm-diameter beam (dotted curve) has been included for comparison; (c) transmission trap detector, interpolation of the nonlinearity of the 5-mm-diameter beam (solid curve), and interpolation of the 1.5-mm-diameter beam (dotted curve) has been included for comparison; and (d) the fitted curves in one plot: single photodiode (dotted curve), reflection trap detector (dashed curve), transmission trap detector (solid curve). Curves indicate fitted functions of nonlinearity described in Subsection 2.D. Bars represent the standard deviations of the nonlinearity values.

Fig. 5
Fig. 5

Nonlinearities of the detectors based on photodiodes with an active area of 18 × 18 mm2. Diameter of the laser beam used was 1.5 mm and the wavelength was 633 nm: (a) single photodiode (diamonds), interpolation of the nonlinearity of the large-area photodiode (solid curve), and interpolation of the small-area photodiode (dotted curve) has been included for comparison; (b) reflection trap detector (diamonds), interpolation of the nonlinearity of the large-area photodiode construction (solid curve), and interpolation of the small-area photodiode construction (dashed curve) has been included for comparison. Curves indicate fitted functions of nonlinearity described in Subsection 2.D. Bars represent the standard deviations of the nonlinearity values.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ i = R i R o - 1 ,
Δ i = - a exp bi - 1 ,

Metrics