Abstract

The wavelength dependence of the reflectivity of AR-coated facets and carrier density in relation to peak wavelength of the gain profile have been taken into consideration to study a one-facet AR-coated semiconductor diode laser. A graphic analysis method is developed to study cases in which analytical expressions of the reflectivity curves cannot be extracted. Results show that the upper bound of the carrier density that can be established inside the diode is generally (sometimes to a considerable degree) smaller than that determined by the claimed minimum reflectivity if the spectral width of the reflectivity curve cannot be regarded as infinite. This implies that the effective reflectivity of the AR-coated facet is generally larger than the claimed minimum reflectivity. To increase the effectiveness of AR film, it is essential to maintain tight control of the wavelength at which the reflectivity curve is minimum.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Eisenstein, G. Raybon, L. W. Stulz, “Deposition and measurements of SiOx antireflection coatings on InGaAsP injection laser facets,” IEEE J. Lightwave Technol. 6, 12–15 (1988).
    [CrossRef]
  2. N. A. Olsson, M. G. Oberg, L. D. Tzeng, T. Cella, “Ultra-low reflectivity 1.5 μm semiconductor laser preamplifier,” Electron. Lett. 24, 569–570 (1988).
    [CrossRef]
  3. B. Luo, L. Wu, J. Chen, Y. Lu, “Determination of wavelength dependence of the reflectivity at AR coated diode facets,” IEEE Photon. Technol. Lett. 5, 1279–1281 (1993).
    [CrossRef]
  4. C. Vassallo, “Polarisation-independent antireflection coatings for semiconductor optical amplifiers,” Electron. Lett. 24, 61–62 (1988).
    [CrossRef]
  5. N. K. Dutta, P. P. Deimel, “Optical properties of a GaAlAs superluminescent diode,” IEEE J. Quantum Electron. 19, 469–498 (1983).
    [CrossRef]
  6. J. Wang, J. Chen, Y. Hao, Y. Lu, “Additional wavelength shift of peak gain due to inhomogeneous distributions of carriers inside semiconductor lasers,” IEEE Photon. Technol. Lett. 5, 1171–1173 (1993).
    [CrossRef]

1993

B. Luo, L. Wu, J. Chen, Y. Lu, “Determination of wavelength dependence of the reflectivity at AR coated diode facets,” IEEE Photon. Technol. Lett. 5, 1279–1281 (1993).
[CrossRef]

J. Wang, J. Chen, Y. Hao, Y. Lu, “Additional wavelength shift of peak gain due to inhomogeneous distributions of carriers inside semiconductor lasers,” IEEE Photon. Technol. Lett. 5, 1171–1173 (1993).
[CrossRef]

1988

C. Vassallo, “Polarisation-independent antireflection coatings for semiconductor optical amplifiers,” Electron. Lett. 24, 61–62 (1988).
[CrossRef]

G. Eisenstein, G. Raybon, L. W. Stulz, “Deposition and measurements of SiOx antireflection coatings on InGaAsP injection laser facets,” IEEE J. Lightwave Technol. 6, 12–15 (1988).
[CrossRef]

N. A. Olsson, M. G. Oberg, L. D. Tzeng, T. Cella, “Ultra-low reflectivity 1.5 μm semiconductor laser preamplifier,” Electron. Lett. 24, 569–570 (1988).
[CrossRef]

1983

N. K. Dutta, P. P. Deimel, “Optical properties of a GaAlAs superluminescent diode,” IEEE J. Quantum Electron. 19, 469–498 (1983).
[CrossRef]

Cella, T.

N. A. Olsson, M. G. Oberg, L. D. Tzeng, T. Cella, “Ultra-low reflectivity 1.5 μm semiconductor laser preamplifier,” Electron. Lett. 24, 569–570 (1988).
[CrossRef]

Chen, J.

B. Luo, L. Wu, J. Chen, Y. Lu, “Determination of wavelength dependence of the reflectivity at AR coated diode facets,” IEEE Photon. Technol. Lett. 5, 1279–1281 (1993).
[CrossRef]

J. Wang, J. Chen, Y. Hao, Y. Lu, “Additional wavelength shift of peak gain due to inhomogeneous distributions of carriers inside semiconductor lasers,” IEEE Photon. Technol. Lett. 5, 1171–1173 (1993).
[CrossRef]

Deimel, P. P.

N. K. Dutta, P. P. Deimel, “Optical properties of a GaAlAs superluminescent diode,” IEEE J. Quantum Electron. 19, 469–498 (1983).
[CrossRef]

Dutta, N. K.

N. K. Dutta, P. P. Deimel, “Optical properties of a GaAlAs superluminescent diode,” IEEE J. Quantum Electron. 19, 469–498 (1983).
[CrossRef]

Eisenstein, G.

G. Eisenstein, G. Raybon, L. W. Stulz, “Deposition and measurements of SiOx antireflection coatings on InGaAsP injection laser facets,” IEEE J. Lightwave Technol. 6, 12–15 (1988).
[CrossRef]

Hao, Y.

J. Wang, J. Chen, Y. Hao, Y. Lu, “Additional wavelength shift of peak gain due to inhomogeneous distributions of carriers inside semiconductor lasers,” IEEE Photon. Technol. Lett. 5, 1171–1173 (1993).
[CrossRef]

Lu, Y.

J. Wang, J. Chen, Y. Hao, Y. Lu, “Additional wavelength shift of peak gain due to inhomogeneous distributions of carriers inside semiconductor lasers,” IEEE Photon. Technol. Lett. 5, 1171–1173 (1993).
[CrossRef]

B. Luo, L. Wu, J. Chen, Y. Lu, “Determination of wavelength dependence of the reflectivity at AR coated diode facets,” IEEE Photon. Technol. Lett. 5, 1279–1281 (1993).
[CrossRef]

Luo, B.

B. Luo, L. Wu, J. Chen, Y. Lu, “Determination of wavelength dependence of the reflectivity at AR coated diode facets,” IEEE Photon. Technol. Lett. 5, 1279–1281 (1993).
[CrossRef]

Oberg, M. G.

N. A. Olsson, M. G. Oberg, L. D. Tzeng, T. Cella, “Ultra-low reflectivity 1.5 μm semiconductor laser preamplifier,” Electron. Lett. 24, 569–570 (1988).
[CrossRef]

Olsson, N. A.

N. A. Olsson, M. G. Oberg, L. D. Tzeng, T. Cella, “Ultra-low reflectivity 1.5 μm semiconductor laser preamplifier,” Electron. Lett. 24, 569–570 (1988).
[CrossRef]

Raybon, G.

G. Eisenstein, G. Raybon, L. W. Stulz, “Deposition and measurements of SiOx antireflection coatings on InGaAsP injection laser facets,” IEEE J. Lightwave Technol. 6, 12–15 (1988).
[CrossRef]

Stulz, L. W.

G. Eisenstein, G. Raybon, L. W. Stulz, “Deposition and measurements of SiOx antireflection coatings on InGaAsP injection laser facets,” IEEE J. Lightwave Technol. 6, 12–15 (1988).
[CrossRef]

Tzeng, L. D.

N. A. Olsson, M. G. Oberg, L. D. Tzeng, T. Cella, “Ultra-low reflectivity 1.5 μm semiconductor laser preamplifier,” Electron. Lett. 24, 569–570 (1988).
[CrossRef]

Vassallo, C.

C. Vassallo, “Polarisation-independent antireflection coatings for semiconductor optical amplifiers,” Electron. Lett. 24, 61–62 (1988).
[CrossRef]

Wang, J.

J. Wang, J. Chen, Y. Hao, Y. Lu, “Additional wavelength shift of peak gain due to inhomogeneous distributions of carriers inside semiconductor lasers,” IEEE Photon. Technol. Lett. 5, 1171–1173 (1993).
[CrossRef]

Wu, L.

B. Luo, L. Wu, J. Chen, Y. Lu, “Determination of wavelength dependence of the reflectivity at AR coated diode facets,” IEEE Photon. Technol. Lett. 5, 1279–1281 (1993).
[CrossRef]

Electron. Lett.

N. A. Olsson, M. G. Oberg, L. D. Tzeng, T. Cella, “Ultra-low reflectivity 1.5 μm semiconductor laser preamplifier,” Electron. Lett. 24, 569–570 (1988).
[CrossRef]

C. Vassallo, “Polarisation-independent antireflection coatings for semiconductor optical amplifiers,” Electron. Lett. 24, 61–62 (1988).
[CrossRef]

IEEE J. Lightwave Technol.

G. Eisenstein, G. Raybon, L. W. Stulz, “Deposition and measurements of SiOx antireflection coatings on InGaAsP injection laser facets,” IEEE J. Lightwave Technol. 6, 12–15 (1988).
[CrossRef]

IEEE J. Quantum Electron.

N. K. Dutta, P. P. Deimel, “Optical properties of a GaAlAs superluminescent diode,” IEEE J. Quantum Electron. 19, 469–498 (1983).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Wang, J. Chen, Y. Hao, Y. Lu, “Additional wavelength shift of peak gain due to inhomogeneous distributions of carriers inside semiconductor lasers,” IEEE Photon. Technol. Lett. 5, 1171–1173 (1993).
[CrossRef]

B. Luo, L. Wu, J. Chen, Y. Lu, “Determination of wavelength dependence of the reflectivity at AR coated diode facets,” IEEE Photon. Technol. Lett. 5, 1279–1281 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Carrier density versus wavelength dependence in the c–λ plane: inside the diode, dash–dot curve; loss profile, solid curve; gain profile, dashed curve.

Fig. 2
Fig. 2

(a) Results for N up and λth that were obtained by graphic analysis. (b) Predicted dependences of N up and λth on the wavelength offset between λ T and λ0.

Fig. 3
Fig. 3

Variations of (a) N up and (b) R eff with parameter Λ T for different spectral widths of the reflectivity curves.

Fig. 4
Fig. 4

Dependences of optimum reflectivity R opt and required Λopt on the spectral width of the reflectivity curves.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

G = R 0 R   exp 2 L a Γ N / H - N 0 - γ ,
H λ = 1 + λ - λ g N 2 .
R = R m exp 2 a Γ LF Λ ,
N T = N 0 + γ - ln R 0 R m / 2 L / a Γ .
N U = N 0 + γ - ln R 0 R i / 2 L / a Γ .
N λ / 1 + λ - λ g N 2 = N T - F Λ .
R eff = exp 2 L γ - a Γ N up - N 0 / R 0 .
I / eV = AN + BN 2 + CN 3 ,
F Λ = N max - N inf 1 - exp - Λ 2 / D 2 ,
λ g N = λ T + b N - N max ,

Metrics