Abstract

An imaging spectroradiometer was built covering the 8–12-μm region with an acousto-optic tunable filter with a 3-cm-1 passband, along with a commercial infrared camera. The system field of view was 7.5° × 10°, and the resolution was nearly diffraction limited. Real-time images were digitally recorded, and software was used to enhance the data and increase the camera temperature sensitivity to less than a millidegree Kelvin. The minimum discernible intensity was 10-3 that of a globar source at 900 K, and emission from SF6 could be imaged at ambient temperatures.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Glenar, J. J. Himan, B. Saif, J. Bergstrahl, “Acousto-optic imaging spectropolarimetry for remote detection sensing,” Appl. Opt. 33, 7412–7424 (1994).
    [CrossRef] [PubMed]
  2. I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
    [CrossRef]
  3. D. R. Suhre, J. G. Theodore, “White-light imaging by use of a multiple passband acousto-optic tunable filter,” Appl. Opt. 35, 4494–4501 (1996).
    [CrossRef] [PubMed]
  4. D. R. Suhre, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic filters,” Opt. Eng. 31, 2118–2121 (1992).
    [CrossRef]
  5. M. Gottlieb, “Acousto-optic tunable filters,” in Design and Fabrication of Acousto-Optic Devices, A. P. Goutzoulis, D. R. Pape, eds. (Marcel Dekker, New York, 1994), pp. 197–283.
  6. I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).
    [CrossRef]
  7. I. C. Chang, “Tunable acousto-optic filters: an overview,” Opt. Eng. 16, 455–460 (1977).
    [CrossRef]
  8. T. Yano, A. Watanabe, “Acoustooptic TeO2 tunable filter using far-off-axis anisotropic Bragg diffraction,” Appl. Opt. 15, 2250–2258 (1976).
    [CrossRef] [PubMed]
  9. P. A. Gass, J. R. Sambles, “Accurate design of a noncollinear acousto-optic tunable filter,” Opt. Lett. 16, 429–431 (1991).
    [CrossRef] [PubMed]
  10. J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tl3AsSe3 noncollinear acousto-optic filter operation at 10 μm,” Appl. Phys. Lett. 34, 1–3 (1979).
    [CrossRef]
  11. A. Sivanayagam, D. Findlay, “High resolution noncollinear acoustooptic filters with variable passband characteristics: design,” Appl. Opt. 23, 4601–4608 (1984).
    [CrossRef] [PubMed]
  12. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
    [CrossRef]
  13. M. D. Ewbank, P. R. Newman, N. L. Mota, S. M. Lee, W. L. Wolfe, A. G. DeBell, W. A. Harrison, “The temperature dependence of optical and mechanical properties of Tl3AsSe3,” J. Appl. Phys. 51, 3848–3852 (1980).
    [CrossRef]
  14. M. Gottlieb, T. J. Isaacs, J. D. Feichtner, G. W. Roland, “Acousto-optic properties of some chalcogenide crystals,” J. Appl. Phys. 45, 5145–5151 (1974).
    [CrossRef]
  15. I. C. Chang, P. Katzka, “Acousto-optic properties of chalcogenide compounds,” Proc. IEEE Ultrason. Symp. 1, 511–514 (1987).
  16. I. C. Chang, “Analysis of the noncollinear acousto-optic filter,” Electron. Lett. 11, 617–618 (1975).
    [CrossRef]
  17. Z. Turski, L. A. Kraus, H. C. Huang, “Properties of an cut single crystal lithium niobate transducer,” IEEE Trans. Sonics Ultrason. SU-22, 402–406 (1975).
    [CrossRef]
  18. V. B. Voloshinov, L. A. Kulakov, O. V. Mironov, “Scanning an optical image in the presence of acousto-optic light filtering,” Sov. J. Commun. Technol. Electron. 34, 54–58 (1989).
  19. M. Gottlieb, Z. Kun, “Temporal response of high-resolution acoustooptic tunable filters,” Appl. Opt. 22, 2104–2108 (1983).
    [CrossRef] [PubMed]

1996

1994

1992

D. R. Suhre, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

1991

1989

V. B. Voloshinov, L. A. Kulakov, O. V. Mironov, “Scanning an optical image in the presence of acousto-optic light filtering,” Sov. J. Commun. Technol. Electron. 34, 54–58 (1989).

1987

I. C. Chang, P. Katzka, “Acousto-optic properties of chalcogenide compounds,” Proc. IEEE Ultrason. Symp. 1, 511–514 (1987).

I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
[CrossRef]

1984

1983

1981

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).
[CrossRef]

1980

M. D. Ewbank, P. R. Newman, N. L. Mota, S. M. Lee, W. L. Wolfe, A. G. DeBell, W. A. Harrison, “The temperature dependence of optical and mechanical properties of Tl3AsSe3,” J. Appl. Phys. 51, 3848–3852 (1980).
[CrossRef]

1979

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tl3AsSe3 noncollinear acousto-optic filter operation at 10 μm,” Appl. Phys. Lett. 34, 1–3 (1979).
[CrossRef]

1977

I. C. Chang, “Tunable acousto-optic filters: an overview,” Opt. Eng. 16, 455–460 (1977).
[CrossRef]

1976

1975

I. C. Chang, “Analysis of the noncollinear acousto-optic filter,” Electron. Lett. 11, 617–618 (1975).
[CrossRef]

Z. Turski, L. A. Kraus, H. C. Huang, “Properties of an cut single crystal lithium niobate transducer,” IEEE Trans. Sonics Ultrason. SU-22, 402–406 (1975).
[CrossRef]

1974

M. Gottlieb, T. J. Isaacs, J. D. Feichtner, G. W. Roland, “Acousto-optic properties of some chalcogenide crystals,” J. Appl. Phys. 45, 5145–5151 (1974).
[CrossRef]

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Bergstrahl, J.

Chang, I. C.

I. C. Chang, P. Katzka, “Acousto-optic properties of chalcogenide compounds,” Proc. IEEE Ultrason. Symp. 1, 511–514 (1987).

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).
[CrossRef]

I. C. Chang, “Tunable acousto-optic filters: an overview,” Opt. Eng. 16, 455–460 (1977).
[CrossRef]

I. C. Chang, “Analysis of the noncollinear acousto-optic filter,” Electron. Lett. 11, 617–618 (1975).
[CrossRef]

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Conroy, J. J.

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tl3AsSe3 noncollinear acousto-optic filter operation at 10 μm,” Appl. Phys. Lett. 34, 1–3 (1979).
[CrossRef]

DeBell, A. G.

M. D. Ewbank, P. R. Newman, N. L. Mota, S. M. Lee, W. L. Wolfe, A. G. DeBell, W. A. Harrison, “The temperature dependence of optical and mechanical properties of Tl3AsSe3,” J. Appl. Phys. 51, 3848–3852 (1980).
[CrossRef]

Dwelle, R.

I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
[CrossRef]

Ewbank, M. D.

M. D. Ewbank, P. R. Newman, N. L. Mota, S. M. Lee, W. L. Wolfe, A. G. DeBell, W. A. Harrison, “The temperature dependence of optical and mechanical properties of Tl3AsSe3,” J. Appl. Phys. 51, 3848–3852 (1980).
[CrossRef]

Feichtner, J. D.

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tl3AsSe3 noncollinear acousto-optic filter operation at 10 μm,” Appl. Phys. Lett. 34, 1–3 (1979).
[CrossRef]

M. Gottlieb, T. J. Isaacs, J. D. Feichtner, G. W. Roland, “Acousto-optic properties of some chalcogenide crystals,” J. Appl. Phys. 45, 5145–5151 (1974).
[CrossRef]

Findlay, D.

Gass, P. A.

Glenar, D. A.

Gottlieb, M.

D. R. Suhre, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

M. Gottlieb, Z. Kun, “Temporal response of high-resolution acoustooptic tunable filters,” Appl. Opt. 22, 2104–2108 (1983).
[CrossRef] [PubMed]

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tl3AsSe3 noncollinear acousto-optic filter operation at 10 μm,” Appl. Phys. Lett. 34, 1–3 (1979).
[CrossRef]

M. Gottlieb, T. J. Isaacs, J. D. Feichtner, G. W. Roland, “Acousto-optic properties of some chalcogenide crystals,” J. Appl. Phys. 45, 5145–5151 (1974).
[CrossRef]

M. Gottlieb, “Acousto-optic tunable filters,” in Design and Fabrication of Acousto-Optic Devices, A. P. Goutzoulis, D. R. Pape, eds. (Marcel Dekker, New York, 1994), pp. 197–283.

Harrison, W. A.

M. D. Ewbank, P. R. Newman, N. L. Mota, S. M. Lee, W. L. Wolfe, A. G. DeBell, W. A. Harrison, “The temperature dependence of optical and mechanical properties of Tl3AsSe3,” J. Appl. Phys. 51, 3848–3852 (1980).
[CrossRef]

Himan, J. J.

Huang, H. C.

Z. Turski, L. A. Kraus, H. C. Huang, “Properties of an cut single crystal lithium niobate transducer,” IEEE Trans. Sonics Ultrason. SU-22, 402–406 (1975).
[CrossRef]

Isaacs, T. J.

M. Gottlieb, T. J. Isaacs, J. D. Feichtner, G. W. Roland, “Acousto-optic properties of some chalcogenide crystals,” J. Appl. Phys. 45, 5145–5151 (1974).
[CrossRef]

Katzka, P.

I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
[CrossRef]

I. C. Chang, P. Katzka, “Acousto-optic properties of chalcogenide compounds,” Proc. IEEE Ultrason. Symp. 1, 511–514 (1987).

Kraus, L. A.

Z. Turski, L. A. Kraus, H. C. Huang, “Properties of an cut single crystal lithium niobate transducer,” IEEE Trans. Sonics Ultrason. SU-22, 402–406 (1975).
[CrossRef]

Kulakov, L. A.

V. B. Voloshinov, L. A. Kulakov, O. V. Mironov, “Scanning an optical image in the presence of acousto-optic light filtering,” Sov. J. Commun. Technol. Electron. 34, 54–58 (1989).

Kun, Z.

Kurtz, I.

I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
[CrossRef]

Lee, S. M.

M. D. Ewbank, P. R. Newman, N. L. Mota, S. M. Lee, W. L. Wolfe, A. G. DeBell, W. A. Harrison, “The temperature dependence of optical and mechanical properties of Tl3AsSe3,” J. Appl. Phys. 51, 3848–3852 (1980).
[CrossRef]

Melamed, N. T.

D. R. Suhre, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

Mironov, O. V.

V. B. Voloshinov, L. A. Kulakov, O. V. Mironov, “Scanning an optical image in the presence of acousto-optic light filtering,” Sov. J. Commun. Technol. Electron. 34, 54–58 (1989).

Mota, N. L.

M. D. Ewbank, P. R. Newman, N. L. Mota, S. M. Lee, W. L. Wolfe, A. G. DeBell, W. A. Harrison, “The temperature dependence of optical and mechanical properties of Tl3AsSe3,” J. Appl. Phys. 51, 3848–3852 (1980).
[CrossRef]

Newman, P. R.

M. D. Ewbank, P. R. Newman, N. L. Mota, S. M. Lee, W. L. Wolfe, A. G. DeBell, W. A. Harrison, “The temperature dependence of optical and mechanical properties of Tl3AsSe3,” J. Appl. Phys. 51, 3848–3852 (1980).
[CrossRef]

Roland, G. W.

M. Gottlieb, T. J. Isaacs, J. D. Feichtner, G. W. Roland, “Acousto-optic properties of some chalcogenide crystals,” J. Appl. Phys. 45, 5145–5151 (1974).
[CrossRef]

Saif, B.

Sambles, J. R.

Sivanayagam, A.

Suhre, D. R.

D. R. Suhre, J. G. Theodore, “White-light imaging by use of a multiple passband acousto-optic tunable filter,” Appl. Opt. 35, 4494–4501 (1996).
[CrossRef] [PubMed]

D. R. Suhre, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

Taylor, L. H.

D. R. Suhre, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

Theodore, J. G.

Turski, Z.

Z. Turski, L. A. Kraus, H. C. Huang, “Properties of an cut single crystal lithium niobate transducer,” IEEE Trans. Sonics Ultrason. SU-22, 402–406 (1975).
[CrossRef]

Voloshinov, V. B.

V. B. Voloshinov, L. A. Kulakov, O. V. Mironov, “Scanning an optical image in the presence of acousto-optic light filtering,” Sov. J. Commun. Technol. Electron. 34, 54–58 (1989).

Watanabe, A.

Wolfe, W. L.

M. D. Ewbank, P. R. Newman, N. L. Mota, S. M. Lee, W. L. Wolfe, A. G. DeBell, W. A. Harrison, “The temperature dependence of optical and mechanical properties of Tl3AsSe3,” J. Appl. Phys. 51, 3848–3852 (1980).
[CrossRef]

Yano, T.

Appl. Opt.

Appl. Phys. Lett.

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tl3AsSe3 noncollinear acousto-optic filter operation at 10 μm,” Appl. Phys. Lett. 34, 1–3 (1979).
[CrossRef]

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Electron. Lett.

I. C. Chang, “Analysis of the noncollinear acousto-optic filter,” Electron. Lett. 11, 617–618 (1975).
[CrossRef]

IEEE Trans. Sonics Ultrason.

Z. Turski, L. A. Kraus, H. C. Huang, “Properties of an cut single crystal lithium niobate transducer,” IEEE Trans. Sonics Ultrason. SU-22, 402–406 (1975).
[CrossRef]

J. Appl. Phys.

M. D. Ewbank, P. R. Newman, N. L. Mota, S. M. Lee, W. L. Wolfe, A. G. DeBell, W. A. Harrison, “The temperature dependence of optical and mechanical properties of Tl3AsSe3,” J. Appl. Phys. 51, 3848–3852 (1980).
[CrossRef]

M. Gottlieb, T. J. Isaacs, J. D. Feichtner, G. W. Roland, “Acousto-optic properties of some chalcogenide crystals,” J. Appl. Phys. 45, 5145–5151 (1974).
[CrossRef]

Opt. Eng.

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981).
[CrossRef]

I. C. Chang, “Tunable acousto-optic filters: an overview,” Opt. Eng. 16, 455–460 (1977).
[CrossRef]

D. R. Suhre, M. Gottlieb, L. H. Taylor, N. T. Melamed, “Spatial resolution of imaging noncollinear acousto-optic filters,” Opt. Eng. 31, 2118–2121 (1992).
[CrossRef]

Opt. Lett.

Proc. IEEE Ultrason. Symp.

I. C. Chang, P. Katzka, “Acousto-optic properties of chalcogenide compounds,” Proc. IEEE Ultrason. Symp. 1, 511–514 (1987).

Rev. Sci. Instrum.

I. Kurtz, R. Dwelle, P. Katzka, “Rapid scanning fluorescence spectroscopy using an acousto-optic tunable filter,” Rev. Sci. Instrum. 58, 1996–2003 (1987).
[CrossRef]

Sov. J. Commun. Technol. Electron.

V. B. Voloshinov, L. A. Kulakov, O. V. Mironov, “Scanning an optical image in the presence of acousto-optic light filtering,” Sov. J. Commun. Technol. Electron. 34, 54–58 (1989).

Other

M. Gottlieb, “Acousto-optic tunable filters,” in Design and Fabrication of Acousto-Optic Devices, A. P. Goutzoulis, D. R. Pape, eds. (Marcel Dekker, New York, 1994), pp. 197–283.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of TAS AOTF infrared imaging spectroradiometer.

Fig. 2
Fig. 2

Angular orientation of wave vectors for a negative uniaxial crystal under phase-matched conditions.

Fig. 3
Fig. 3

AOTF response to CO2 laser radiation at 10.59 μm, illustrating 3.1-cm-1 resolution and approximately a sinc2(x) response.

Fig. 4
Fig. 4

Spectral image of cross hairs against a thermal background, showing near-diffraction-limited resolution.

Fig. 5
Fig. 5

Spectral images of (a) globar source, (b) 10-2 scene intensity obtained with reduced AOTF power and increased image processing, and (c) sensitivity limit at 10-3 intensity of globar image.

Fig. 6
Fig. 6

Gas cell with SF6 against a cold background imaged (a) with visible illumination, (b) at 10.4 μm, and (c) at 10.6 μm showing ambient temperature emission from the gas.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

tan   θ d = n o / n e 2 tan   θ i ,
tan   θ a = n i sin   θ i - n d sin   θ d / n i cos   θ i - n d cos   θ d .
n i = cos 2 θ i / n o 2 + sin 2 θ i / n e 2 - 1 / 2 ,
L = L t / sin θ i - θ a .
Δ λ bw = 1.8 π λ o 2 / b λ L   sin 2 θ i ,
b λ = 2 π Δ n - λ o Δ n / λ o ,
Δ Ω = π n o 2 λ o / Δ nL / | F θ F ϕ | 1 / 2 ,
F θ = 2   cos 2 θ i - sin 2 θ i , F ϕ = 2   cos 2 θ i + sin 2 θ i .
η = sin 2 π 2 M 2 θ i I a L 2 / 2 λ o 2 1 / 2 ,
Δ θ blur = Δ n Δ λ / λ o sin 4 θ i + sin 2 2 θ i 1 / 2 ,
θ d - θ i = - Δ n / n o sin   2 θ i ,
Δ β / Δ λ = w n o / λ - sin   2 θ i Δ n / λ ,
f a = Δ nV a / λ o sin 4 θ i + sin 2   2 θ i 1 / 2 ,
Δ λ / Δ T = λ o / Δ nV a Δ nV a / T .

Metrics