Abstract

Ocean color is determined by spectral variations in reflectance at the sea surface, which in turn result from both elastic and inelastic processes. We extend an elastic-scattering model of sea surface reflectance to deal with Raman scattering, which is an inelastic process. The analytic solutions are derived for a vertically homogeneous and optically deep water column. The model presented here is based on the quasi-single-scattering approximation of Gordon [Appl. Opt. 12, 2803 (1973)] and is an extension of the model of Sathyendranath and Platt [Appl. Opt. 36, 2620 (1997)]. The Raman-scattering model includes a first-order Raman-scattering term and four second-order terms. Two of the second-order terms result from a combination of an elastic and a Raman-scattering event, whereas the other two second-order terms result from two Raman-scattering events. We show that the contribution to reflectance from these last two terms is typically of the order of 1% of the first-order Raman-scattering term. Therefore these terms and higher-order terms can be neglected for most applications. Issues related to the implementation of the model are discussed, with special reference to remote-sensing applications. Results from the analytic model are compared with Monte Carlo simulations of reflectance at the sea surface.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (27)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription