Abstract

We present accurately calibrated submillimeter atmospheric transmission spectra obtained with a Fourier-transform spectrometer at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii. These measurements cover the 0.9–0.3-mm wavelength range and are the first in a series aimed at defining the terrestrial long-wave atmospheric transmission curve. The 4.1-km altitude of the Mauna Kea site provides access to extremely low zenith water-vapor columns, permitting atmospheric observations at frequencies well above those possible from sea level. We describe the calibration procedures, present our first well-calibrated transmission spectra, and compare our results with those of a single-layer atmospheric transmission model, AT. With an empirical best-fit continuum opacity term included, this simple single-layer model provides a remarkably good fit to the opacity data for H2O line profiles described by either van Vleck–Weisskopf or kinetic shapes.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Traub, M. T. Stier, “Theoretical atmospheric transmission in the mid- and far-infrared at four altitudes,” Appl. Opt. 15, 364–377 (1976).
    [CrossRef] [PubMed]
  2. A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Atmospheric Water Vapor (Academic, New York, 1980).
  3. J. W. Waters, “Absorption and emission by atmospheric gases,” in Methods of Experimental Physics 12B: Astrophysics, M. L. Meeks, ed. (Academic, New York, 1976), pp. 142–176.
    [CrossRef]
  4. D. P. Rice, P. A. R. Ade, “Absolute measurements of the atmospheric transparency at short millimetre wavelengths,” Infrared Phys. 19, 575–584 (1979).
    [CrossRef]
  5. H. J. Liebe, “An atmospheric millimeter-wave propagation model,” Int. J. Infrared Millimeter Waves 10, 631–650 (1989).
    [CrossRef]
  6. P. W. Rosenkranz, “Absorption of microwaves by atmospheric gases,” in Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, ed. (Wiley, New York, 1993), pp. 37–79.
  7. W. B. Grant, “Water vapor absorption coefficients in the 8-13-μm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
    [CrossRef] [PubMed]
  8. P. W. Rozenkranz, “Pressure broadening of rotational bands. I. A statistical theory,” J. Chem. Phys. 83, 6139–6144 (1985).
    [CrossRef]
  9. S. A. Clough, F. X. Kneizys, R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–241 (1989).
    [CrossRef]
  10. Q. Ma, R. H. Tipping, “Water vapor continuum in the millimeter spectral region,” J. Chem. Phys. 93, 6127–6139 (1990).
    [CrossRef]
  11. H. J. Liebe, “The atmospheric water vapor continuum below 300 GHz,” Int. J. Infrared Millimeter Waves 5, 207–227 (1984).
    [CrossRef]
  12. R. L. de Zafra, M. Jamarillo, J. Barrett, L. K. Emmons, A. Parrish, P. M. Solomon, “Measurement of atmospheric opacity at 278 GHz at McMurdo station, Antarctica in austral spring seasons, 1986 and 1987,” Int. J. Infrared Millimeter Waves 11, 463–467 (1990).
    [CrossRef]
  13. R. A. Chamberlin, J. Bally, “225-GHz atmospheric opacity of the South Pole sky derived from continual radiometric measurements of the sky-brightness temperature,” Appl. Opt. 33, 1095–1099 (1994).
    [CrossRef] [PubMed]
  14. I. G. Nolt, T. Z. Martin, C. W. Wood, W. M. Sinton, “Far infrared absorption of the atmosphere above 4.2 km,” J. Atmos. Sci. 28, 238–241 (1971).
    [CrossRef]
  15. R. E. Hills, A. S. Webster, D. A. Alston, P. L. R. Morse, C. C. Zammit, D. H. Martin, D. P. Rice, E. I. Robson, “Absolute measurements of atmospheric emission and absorption in the range 100–1000 GHz,” Infrared Phys. 18, 819–825 (1978).
    [CrossRef]
  16. D. A. Naylor, T. A. Clark, A. A. Schultz, G. R. Davis, “Atmospheric transmission at submillimetre wavelengths from Mauna Kea,” Mon. Not. R. Astron. Soc. 251, 199–202 (1991).
  17. E. Serabyn, E. W. Weisstein, “Calibration of planetary brightness temperature spectra at near-millimeter and submillimeter wavelengths with a Fourier-transform spectrometer,” Appl. Opt. 35, 2752–2763 (1996).
    [CrossRef] [PubMed]
  18. E. Serabyn, E. W. Weisstein, “Fourier transform spectroscopy of the Orion molecular cloud core,” Astrophys. J. 451, 238–251 (1995).
    [CrossRef]
  19. H. J. Liebe, “Atmospheric water vapor: a nemesis for millimeter wave propagation,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, eds. (Academic, New York, 1980), pp. 143–201.
  20. E. Grossman, AT User’s Manual (Airhead Software, 2069 Bluff Street, Boulder, Colo. 80302, 1989).
  21. M. L. Salby, Fundamentals of Atmospheric Physics (Academic, New York, 1996), Chap. 8.
  22. Eccosorb AN-72, Emerson & Cumming, Inc., Woburn, Mass. 01888.
  23. M. L. Kutner, B. L. Ulich, “Recommendations for calibration of millimeter-wavelength spectral line data,” Astrophys. J. 250, 341–348 (1981).
    [CrossRef]
  24. B. L. Ulich, R. W. Haas, “Absolute calibration of millimeter-wavelength spectral lines,” Astrophys. J. Suppl. 30, 247–258 (1976).
    [CrossRef]
  25. D. H. Martin, “Polarizing (Martin–Puplett) interferometric spectrometers for the near- and submillimeter spectra,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1982), Vol. 6, pp. 65–148.
  26. T. J. Sodroski, “Large-scale characteristics of interstellar dust from COBE DIRBE observations” Astrophys. J. 428, 638–646 (1994).
    [CrossRef]
  27. M. G. Hauser, “IRAS observations of the diffuse infrared background,” Astrophys. J. 278, L15–L18 (1984).
    [CrossRef]
  28. J. C. Mather, “Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument,” Astrophys. J. 420, 439–444 (1994).
    [CrossRef]
  29. A. Blanco, S. Fonti, M. Mancarella, A. Piacente, “Reflectivity measurements of Eccosorb,” Infrared Phys. 25, 561–562 (1985).
    [CrossRef]
  30. R. Goody, Principles of Atmospheric Physics and Chemistry (Oxford U. Press, Oxford, 1995), p. 35.
  31. M. McKinnon, “Measurement of atmospheric opacity due to water vapor at 225 GHz,” Millimeter Array Memo 40 (National Radio Astronomy Observatory, Socorro, N.M., 1987).
  32. R. L. Poynter, H. M. Pickett, “Submillimeter, millimeter, and microwave spectral line catalog,” Appl. Opt. 24, 2235–2240 (1985), also http://spec.jpl.nasa.gov/ .
    [CrossRef] [PubMed]
  33. E. Serabyn, E. W. Weisstein, D. C. Lis, “FTS atmospheric transmission measurements and observations of planetary atmospheres,” in The Physics and Chemistry of Interstellar Molecular Clouds, G. Winnewisser, G. C. Pelz, eds. (Springer-Verlag, Berlin, 1995), pp. 377–379.
    [CrossRef]
  34. B. L. Ulich, “Improved correction for millimeter-wavelength atmospheric attenuation,” Astrophys. Lett. 21, 21–28 (1980).
  35. C. C. Zammit, P. A. R. Ade, “Zenith atmospheric attenuation measurements at millimetre and sub-millimetre wavelengths,” Nature (London) 293, 550–552 (1981).
    [CrossRef]

1996 (1)

1995 (1)

E. Serabyn, E. W. Weisstein, “Fourier transform spectroscopy of the Orion molecular cloud core,” Astrophys. J. 451, 238–251 (1995).
[CrossRef]

1994 (3)

T. J. Sodroski, “Large-scale characteristics of interstellar dust from COBE DIRBE observations” Astrophys. J. 428, 638–646 (1994).
[CrossRef]

J. C. Mather, “Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument,” Astrophys. J. 420, 439–444 (1994).
[CrossRef]

R. A. Chamberlin, J. Bally, “225-GHz atmospheric opacity of the South Pole sky derived from continual radiometric measurements of the sky-brightness temperature,” Appl. Opt. 33, 1095–1099 (1994).
[CrossRef] [PubMed]

1991 (1)

D. A. Naylor, T. A. Clark, A. A. Schultz, G. R. Davis, “Atmospheric transmission at submillimetre wavelengths from Mauna Kea,” Mon. Not. R. Astron. Soc. 251, 199–202 (1991).

1990 (3)

R. L. de Zafra, M. Jamarillo, J. Barrett, L. K. Emmons, A. Parrish, P. M. Solomon, “Measurement of atmospheric opacity at 278 GHz at McMurdo station, Antarctica in austral spring seasons, 1986 and 1987,” Int. J. Infrared Millimeter Waves 11, 463–467 (1990).
[CrossRef]

Q. Ma, R. H. Tipping, “Water vapor continuum in the millimeter spectral region,” J. Chem. Phys. 93, 6127–6139 (1990).
[CrossRef]

W. B. Grant, “Water vapor absorption coefficients in the 8-13-μm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
[CrossRef] [PubMed]

1989 (2)

S. A. Clough, F. X. Kneizys, R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–241 (1989).
[CrossRef]

H. J. Liebe, “An atmospheric millimeter-wave propagation model,” Int. J. Infrared Millimeter Waves 10, 631–650 (1989).
[CrossRef]

1985 (3)

A. Blanco, S. Fonti, M. Mancarella, A. Piacente, “Reflectivity measurements of Eccosorb,” Infrared Phys. 25, 561–562 (1985).
[CrossRef]

P. W. Rozenkranz, “Pressure broadening of rotational bands. I. A statistical theory,” J. Chem. Phys. 83, 6139–6144 (1985).
[CrossRef]

R. L. Poynter, H. M. Pickett, “Submillimeter, millimeter, and microwave spectral line catalog,” Appl. Opt. 24, 2235–2240 (1985), also http://spec.jpl.nasa.gov/ .
[CrossRef] [PubMed]

1984 (2)

H. J. Liebe, “The atmospheric water vapor continuum below 300 GHz,” Int. J. Infrared Millimeter Waves 5, 207–227 (1984).
[CrossRef]

M. G. Hauser, “IRAS observations of the diffuse infrared background,” Astrophys. J. 278, L15–L18 (1984).
[CrossRef]

1981 (2)

M. L. Kutner, B. L. Ulich, “Recommendations for calibration of millimeter-wavelength spectral line data,” Astrophys. J. 250, 341–348 (1981).
[CrossRef]

C. C. Zammit, P. A. R. Ade, “Zenith atmospheric attenuation measurements at millimetre and sub-millimetre wavelengths,” Nature (London) 293, 550–552 (1981).
[CrossRef]

1980 (1)

B. L. Ulich, “Improved correction for millimeter-wavelength atmospheric attenuation,” Astrophys. Lett. 21, 21–28 (1980).

1979 (1)

D. P. Rice, P. A. R. Ade, “Absolute measurements of the atmospheric transparency at short millimetre wavelengths,” Infrared Phys. 19, 575–584 (1979).
[CrossRef]

1978 (1)

R. E. Hills, A. S. Webster, D. A. Alston, P. L. R. Morse, C. C. Zammit, D. H. Martin, D. P. Rice, E. I. Robson, “Absolute measurements of atmospheric emission and absorption in the range 100–1000 GHz,” Infrared Phys. 18, 819–825 (1978).
[CrossRef]

1976 (2)

B. L. Ulich, R. W. Haas, “Absolute calibration of millimeter-wavelength spectral lines,” Astrophys. J. Suppl. 30, 247–258 (1976).
[CrossRef]

W. A. Traub, M. T. Stier, “Theoretical atmospheric transmission in the mid- and far-infrared at four altitudes,” Appl. Opt. 15, 364–377 (1976).
[CrossRef] [PubMed]

1971 (1)

I. G. Nolt, T. Z. Martin, C. W. Wood, W. M. Sinton, “Far infrared absorption of the atmosphere above 4.2 km,” J. Atmos. Sci. 28, 238–241 (1971).
[CrossRef]

Ade, P. A. R.

C. C. Zammit, P. A. R. Ade, “Zenith atmospheric attenuation measurements at millimetre and sub-millimetre wavelengths,” Nature (London) 293, 550–552 (1981).
[CrossRef]

D. P. Rice, P. A. R. Ade, “Absolute measurements of the atmospheric transparency at short millimetre wavelengths,” Infrared Phys. 19, 575–584 (1979).
[CrossRef]

Alston, D. A.

R. E. Hills, A. S. Webster, D. A. Alston, P. L. R. Morse, C. C. Zammit, D. H. Martin, D. P. Rice, E. I. Robson, “Absolute measurements of atmospheric emission and absorption in the range 100–1000 GHz,” Infrared Phys. 18, 819–825 (1978).
[CrossRef]

Bally, J.

Barrett, J.

R. L. de Zafra, M. Jamarillo, J. Barrett, L. K. Emmons, A. Parrish, P. M. Solomon, “Measurement of atmospheric opacity at 278 GHz at McMurdo station, Antarctica in austral spring seasons, 1986 and 1987,” Int. J. Infrared Millimeter Waves 11, 463–467 (1990).
[CrossRef]

Blanco, A.

A. Blanco, S. Fonti, M. Mancarella, A. Piacente, “Reflectivity measurements of Eccosorb,” Infrared Phys. 25, 561–562 (1985).
[CrossRef]

Chamberlin, R. A.

Clark, T. A.

D. A. Naylor, T. A. Clark, A. A. Schultz, G. R. Davis, “Atmospheric transmission at submillimetre wavelengths from Mauna Kea,” Mon. Not. R. Astron. Soc. 251, 199–202 (1991).

Clough, S. A.

S. A. Clough, F. X. Kneizys, R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–241 (1989).
[CrossRef]

Davies, R. W.

S. A. Clough, F. X. Kneizys, R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–241 (1989).
[CrossRef]

Davis, G. R.

D. A. Naylor, T. A. Clark, A. A. Schultz, G. R. Davis, “Atmospheric transmission at submillimetre wavelengths from Mauna Kea,” Mon. Not. R. Astron. Soc. 251, 199–202 (1991).

de Zafra, R. L.

R. L. de Zafra, M. Jamarillo, J. Barrett, L. K. Emmons, A. Parrish, P. M. Solomon, “Measurement of atmospheric opacity at 278 GHz at McMurdo station, Antarctica in austral spring seasons, 1986 and 1987,” Int. J. Infrared Millimeter Waves 11, 463–467 (1990).
[CrossRef]

Deepak, A.

A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Atmospheric Water Vapor (Academic, New York, 1980).

Emmons, L. K.

R. L. de Zafra, M. Jamarillo, J. Barrett, L. K. Emmons, A. Parrish, P. M. Solomon, “Measurement of atmospheric opacity at 278 GHz at McMurdo station, Antarctica in austral spring seasons, 1986 and 1987,” Int. J. Infrared Millimeter Waves 11, 463–467 (1990).
[CrossRef]

Fonti, S.

A. Blanco, S. Fonti, M. Mancarella, A. Piacente, “Reflectivity measurements of Eccosorb,” Infrared Phys. 25, 561–562 (1985).
[CrossRef]

Goody, R.

R. Goody, Principles of Atmospheric Physics and Chemistry (Oxford U. Press, Oxford, 1995), p. 35.

Grant, W. B.

Grossman, E.

E. Grossman, AT User’s Manual (Airhead Software, 2069 Bluff Street, Boulder, Colo. 80302, 1989).

Haas, R. W.

B. L. Ulich, R. W. Haas, “Absolute calibration of millimeter-wavelength spectral lines,” Astrophys. J. Suppl. 30, 247–258 (1976).
[CrossRef]

Hauser, M. G.

M. G. Hauser, “IRAS observations of the diffuse infrared background,” Astrophys. J. 278, L15–L18 (1984).
[CrossRef]

Hills, R. E.

R. E. Hills, A. S. Webster, D. A. Alston, P. L. R. Morse, C. C. Zammit, D. H. Martin, D. P. Rice, E. I. Robson, “Absolute measurements of atmospheric emission and absorption in the range 100–1000 GHz,” Infrared Phys. 18, 819–825 (1978).
[CrossRef]

Jamarillo, M.

R. L. de Zafra, M. Jamarillo, J. Barrett, L. K. Emmons, A. Parrish, P. M. Solomon, “Measurement of atmospheric opacity at 278 GHz at McMurdo station, Antarctica in austral spring seasons, 1986 and 1987,” Int. J. Infrared Millimeter Waves 11, 463–467 (1990).
[CrossRef]

Kneizys, F. X.

S. A. Clough, F. X. Kneizys, R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–241 (1989).
[CrossRef]

Kutner, M. L.

M. L. Kutner, B. L. Ulich, “Recommendations for calibration of millimeter-wavelength spectral line data,” Astrophys. J. 250, 341–348 (1981).
[CrossRef]

Liebe, H. J.

H. J. Liebe, “An atmospheric millimeter-wave propagation model,” Int. J. Infrared Millimeter Waves 10, 631–650 (1989).
[CrossRef]

H. J. Liebe, “The atmospheric water vapor continuum below 300 GHz,” Int. J. Infrared Millimeter Waves 5, 207–227 (1984).
[CrossRef]

H. J. Liebe, “Atmospheric water vapor: a nemesis for millimeter wave propagation,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, eds. (Academic, New York, 1980), pp. 143–201.

Lis, D. C.

E. Serabyn, E. W. Weisstein, D. C. Lis, “FTS atmospheric transmission measurements and observations of planetary atmospheres,” in The Physics and Chemistry of Interstellar Molecular Clouds, G. Winnewisser, G. C. Pelz, eds. (Springer-Verlag, Berlin, 1995), pp. 377–379.
[CrossRef]

Ma, Q.

Q. Ma, R. H. Tipping, “Water vapor continuum in the millimeter spectral region,” J. Chem. Phys. 93, 6127–6139 (1990).
[CrossRef]

Mancarella, M.

A. Blanco, S. Fonti, M. Mancarella, A. Piacente, “Reflectivity measurements of Eccosorb,” Infrared Phys. 25, 561–562 (1985).
[CrossRef]

Martin, D. H.

R. E. Hills, A. S. Webster, D. A. Alston, P. L. R. Morse, C. C. Zammit, D. H. Martin, D. P. Rice, E. I. Robson, “Absolute measurements of atmospheric emission and absorption in the range 100–1000 GHz,” Infrared Phys. 18, 819–825 (1978).
[CrossRef]

D. H. Martin, “Polarizing (Martin–Puplett) interferometric spectrometers for the near- and submillimeter spectra,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1982), Vol. 6, pp. 65–148.

Martin, T. Z.

I. G. Nolt, T. Z. Martin, C. W. Wood, W. M. Sinton, “Far infrared absorption of the atmosphere above 4.2 km,” J. Atmos. Sci. 28, 238–241 (1971).
[CrossRef]

Mather, J. C.

J. C. Mather, “Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument,” Astrophys. J. 420, 439–444 (1994).
[CrossRef]

McKinnon, M.

M. McKinnon, “Measurement of atmospheric opacity due to water vapor at 225 GHz,” Millimeter Array Memo 40 (National Radio Astronomy Observatory, Socorro, N.M., 1987).

Morse, P. L. R.

R. E. Hills, A. S. Webster, D. A. Alston, P. L. R. Morse, C. C. Zammit, D. H. Martin, D. P. Rice, E. I. Robson, “Absolute measurements of atmospheric emission and absorption in the range 100–1000 GHz,” Infrared Phys. 18, 819–825 (1978).
[CrossRef]

Naylor, D. A.

D. A. Naylor, T. A. Clark, A. A. Schultz, G. R. Davis, “Atmospheric transmission at submillimetre wavelengths from Mauna Kea,” Mon. Not. R. Astron. Soc. 251, 199–202 (1991).

Nolt, I. G.

I. G. Nolt, T. Z. Martin, C. W. Wood, W. M. Sinton, “Far infrared absorption of the atmosphere above 4.2 km,” J. Atmos. Sci. 28, 238–241 (1971).
[CrossRef]

Parrish, A.

R. L. de Zafra, M. Jamarillo, J. Barrett, L. K. Emmons, A. Parrish, P. M. Solomon, “Measurement of atmospheric opacity at 278 GHz at McMurdo station, Antarctica in austral spring seasons, 1986 and 1987,” Int. J. Infrared Millimeter Waves 11, 463–467 (1990).
[CrossRef]

Piacente, A.

A. Blanco, S. Fonti, M. Mancarella, A. Piacente, “Reflectivity measurements of Eccosorb,” Infrared Phys. 25, 561–562 (1985).
[CrossRef]

Pickett, H. M.

Poynter, R. L.

Rice, D. P.

D. P. Rice, P. A. R. Ade, “Absolute measurements of the atmospheric transparency at short millimetre wavelengths,” Infrared Phys. 19, 575–584 (1979).
[CrossRef]

R. E. Hills, A. S. Webster, D. A. Alston, P. L. R. Morse, C. C. Zammit, D. H. Martin, D. P. Rice, E. I. Robson, “Absolute measurements of atmospheric emission and absorption in the range 100–1000 GHz,” Infrared Phys. 18, 819–825 (1978).
[CrossRef]

Robson, E. I.

R. E. Hills, A. S. Webster, D. A. Alston, P. L. R. Morse, C. C. Zammit, D. H. Martin, D. P. Rice, E. I. Robson, “Absolute measurements of atmospheric emission and absorption in the range 100–1000 GHz,” Infrared Phys. 18, 819–825 (1978).
[CrossRef]

Rosenkranz, P. W.

P. W. Rosenkranz, “Absorption of microwaves by atmospheric gases,” in Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, ed. (Wiley, New York, 1993), pp. 37–79.

Rozenkranz, P. W.

P. W. Rozenkranz, “Pressure broadening of rotational bands. I. A statistical theory,” J. Chem. Phys. 83, 6139–6144 (1985).
[CrossRef]

Ruhnke, L. H.

A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Atmospheric Water Vapor (Academic, New York, 1980).

Salby, M. L.

M. L. Salby, Fundamentals of Atmospheric Physics (Academic, New York, 1996), Chap. 8.

Schultz, A. A.

D. A. Naylor, T. A. Clark, A. A. Schultz, G. R. Davis, “Atmospheric transmission at submillimetre wavelengths from Mauna Kea,” Mon. Not. R. Astron. Soc. 251, 199–202 (1991).

Serabyn, E.

E. Serabyn, E. W. Weisstein, “Calibration of planetary brightness temperature spectra at near-millimeter and submillimeter wavelengths with a Fourier-transform spectrometer,” Appl. Opt. 35, 2752–2763 (1996).
[CrossRef] [PubMed]

E. Serabyn, E. W. Weisstein, “Fourier transform spectroscopy of the Orion molecular cloud core,” Astrophys. J. 451, 238–251 (1995).
[CrossRef]

E. Serabyn, E. W. Weisstein, D. C. Lis, “FTS atmospheric transmission measurements and observations of planetary atmospheres,” in The Physics and Chemistry of Interstellar Molecular Clouds, G. Winnewisser, G. C. Pelz, eds. (Springer-Verlag, Berlin, 1995), pp. 377–379.
[CrossRef]

Sinton, W. M.

I. G. Nolt, T. Z. Martin, C. W. Wood, W. M. Sinton, “Far infrared absorption of the atmosphere above 4.2 km,” J. Atmos. Sci. 28, 238–241 (1971).
[CrossRef]

Sodroski, T. J.

T. J. Sodroski, “Large-scale characteristics of interstellar dust from COBE DIRBE observations” Astrophys. J. 428, 638–646 (1994).
[CrossRef]

Solomon, P. M.

R. L. de Zafra, M. Jamarillo, J. Barrett, L. K. Emmons, A. Parrish, P. M. Solomon, “Measurement of atmospheric opacity at 278 GHz at McMurdo station, Antarctica in austral spring seasons, 1986 and 1987,” Int. J. Infrared Millimeter Waves 11, 463–467 (1990).
[CrossRef]

Stier, M. T.

Tipping, R. H.

Q. Ma, R. H. Tipping, “Water vapor continuum in the millimeter spectral region,” J. Chem. Phys. 93, 6127–6139 (1990).
[CrossRef]

Traub, W. A.

Ulich, B. L.

M. L. Kutner, B. L. Ulich, “Recommendations for calibration of millimeter-wavelength spectral line data,” Astrophys. J. 250, 341–348 (1981).
[CrossRef]

B. L. Ulich, “Improved correction for millimeter-wavelength atmospheric attenuation,” Astrophys. Lett. 21, 21–28 (1980).

B. L. Ulich, R. W. Haas, “Absolute calibration of millimeter-wavelength spectral lines,” Astrophys. J. Suppl. 30, 247–258 (1976).
[CrossRef]

Waters, J. W.

J. W. Waters, “Absorption and emission by atmospheric gases,” in Methods of Experimental Physics 12B: Astrophysics, M. L. Meeks, ed. (Academic, New York, 1976), pp. 142–176.
[CrossRef]

Webster, A. S.

R. E. Hills, A. S. Webster, D. A. Alston, P. L. R. Morse, C. C. Zammit, D. H. Martin, D. P. Rice, E. I. Robson, “Absolute measurements of atmospheric emission and absorption in the range 100–1000 GHz,” Infrared Phys. 18, 819–825 (1978).
[CrossRef]

Weisstein, E. W.

E. Serabyn, E. W. Weisstein, “Calibration of planetary brightness temperature spectra at near-millimeter and submillimeter wavelengths with a Fourier-transform spectrometer,” Appl. Opt. 35, 2752–2763 (1996).
[CrossRef] [PubMed]

E. Serabyn, E. W. Weisstein, “Fourier transform spectroscopy of the Orion molecular cloud core,” Astrophys. J. 451, 238–251 (1995).
[CrossRef]

E. Serabyn, E. W. Weisstein, D. C. Lis, “FTS atmospheric transmission measurements and observations of planetary atmospheres,” in The Physics and Chemistry of Interstellar Molecular Clouds, G. Winnewisser, G. C. Pelz, eds. (Springer-Verlag, Berlin, 1995), pp. 377–379.
[CrossRef]

Wilkerson, T. D.

A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Atmospheric Water Vapor (Academic, New York, 1980).

Wood, C. W.

I. G. Nolt, T. Z. Martin, C. W. Wood, W. M. Sinton, “Far infrared absorption of the atmosphere above 4.2 km,” J. Atmos. Sci. 28, 238–241 (1971).
[CrossRef]

Zammit, C. C.

C. C. Zammit, P. A. R. Ade, “Zenith atmospheric attenuation measurements at millimetre and sub-millimetre wavelengths,” Nature (London) 293, 550–552 (1981).
[CrossRef]

R. E. Hills, A. S. Webster, D. A. Alston, P. L. R. Morse, C. C. Zammit, D. H. Martin, D. P. Rice, E. I. Robson, “Absolute measurements of atmospheric emission and absorption in the range 100–1000 GHz,” Infrared Phys. 18, 819–825 (1978).
[CrossRef]

Appl. Opt. (5)

Astrophys. J. (5)

M. L. Kutner, B. L. Ulich, “Recommendations for calibration of millimeter-wavelength spectral line data,” Astrophys. J. 250, 341–348 (1981).
[CrossRef]

T. J. Sodroski, “Large-scale characteristics of interstellar dust from COBE DIRBE observations” Astrophys. J. 428, 638–646 (1994).
[CrossRef]

M. G. Hauser, “IRAS observations of the diffuse infrared background,” Astrophys. J. 278, L15–L18 (1984).
[CrossRef]

J. C. Mather, “Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument,” Astrophys. J. 420, 439–444 (1994).
[CrossRef]

E. Serabyn, E. W. Weisstein, “Fourier transform spectroscopy of the Orion molecular cloud core,” Astrophys. J. 451, 238–251 (1995).
[CrossRef]

Astrophys. J. Suppl. (1)

B. L. Ulich, R. W. Haas, “Absolute calibration of millimeter-wavelength spectral lines,” Astrophys. J. Suppl. 30, 247–258 (1976).
[CrossRef]

Astrophys. Lett. (1)

B. L. Ulich, “Improved correction for millimeter-wavelength atmospheric attenuation,” Astrophys. Lett. 21, 21–28 (1980).

Atmos. Res. (1)

S. A. Clough, F. X. Kneizys, R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–241 (1989).
[CrossRef]

Infrared Phys. (3)

D. P. Rice, P. A. R. Ade, “Absolute measurements of the atmospheric transparency at short millimetre wavelengths,” Infrared Phys. 19, 575–584 (1979).
[CrossRef]

R. E. Hills, A. S. Webster, D. A. Alston, P. L. R. Morse, C. C. Zammit, D. H. Martin, D. P. Rice, E. I. Robson, “Absolute measurements of atmospheric emission and absorption in the range 100–1000 GHz,” Infrared Phys. 18, 819–825 (1978).
[CrossRef]

A. Blanco, S. Fonti, M. Mancarella, A. Piacente, “Reflectivity measurements of Eccosorb,” Infrared Phys. 25, 561–562 (1985).
[CrossRef]

Int. J. Infrared Millimeter Waves (3)

H. J. Liebe, “An atmospheric millimeter-wave propagation model,” Int. J. Infrared Millimeter Waves 10, 631–650 (1989).
[CrossRef]

H. J. Liebe, “The atmospheric water vapor continuum below 300 GHz,” Int. J. Infrared Millimeter Waves 5, 207–227 (1984).
[CrossRef]

R. L. de Zafra, M. Jamarillo, J. Barrett, L. K. Emmons, A. Parrish, P. M. Solomon, “Measurement of atmospheric opacity at 278 GHz at McMurdo station, Antarctica in austral spring seasons, 1986 and 1987,” Int. J. Infrared Millimeter Waves 11, 463–467 (1990).
[CrossRef]

J. Atmos. Sci. (1)

I. G. Nolt, T. Z. Martin, C. W. Wood, W. M. Sinton, “Far infrared absorption of the atmosphere above 4.2 km,” J. Atmos. Sci. 28, 238–241 (1971).
[CrossRef]

J. Chem. Phys. (2)

Q. Ma, R. H. Tipping, “Water vapor continuum in the millimeter spectral region,” J. Chem. Phys. 93, 6127–6139 (1990).
[CrossRef]

P. W. Rozenkranz, “Pressure broadening of rotational bands. I. A statistical theory,” J. Chem. Phys. 83, 6139–6144 (1985).
[CrossRef]

Mon. Not. R. Astron. Soc. (1)

D. A. Naylor, T. A. Clark, A. A. Schultz, G. R. Davis, “Atmospheric transmission at submillimetre wavelengths from Mauna Kea,” Mon. Not. R. Astron. Soc. 251, 199–202 (1991).

Nature (London) (1)

C. C. Zammit, P. A. R. Ade, “Zenith atmospheric attenuation measurements at millimetre and sub-millimetre wavelengths,” Nature (London) 293, 550–552 (1981).
[CrossRef]

Other (11)

E. Serabyn, E. W. Weisstein, D. C. Lis, “FTS atmospheric transmission measurements and observations of planetary atmospheres,” in The Physics and Chemistry of Interstellar Molecular Clouds, G. Winnewisser, G. C. Pelz, eds. (Springer-Verlag, Berlin, 1995), pp. 377–379.
[CrossRef]

D. H. Martin, “Polarizing (Martin–Puplett) interferometric spectrometers for the near- and submillimeter spectra,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1982), Vol. 6, pp. 65–148.

R. Goody, Principles of Atmospheric Physics and Chemistry (Oxford U. Press, Oxford, 1995), p. 35.

M. McKinnon, “Measurement of atmospheric opacity due to water vapor at 225 GHz,” Millimeter Array Memo 40 (National Radio Astronomy Observatory, Socorro, N.M., 1987).

P. W. Rosenkranz, “Absorption of microwaves by atmospheric gases,” in Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, ed. (Wiley, New York, 1993), pp. 37–79.

A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Atmospheric Water Vapor (Academic, New York, 1980).

J. W. Waters, “Absorption and emission by atmospheric gases,” in Methods of Experimental Physics 12B: Astrophysics, M. L. Meeks, ed. (Academic, New York, 1976), pp. 142–176.
[CrossRef]

H. J. Liebe, “Atmospheric water vapor: a nemesis for millimeter wave propagation,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, eds. (Academic, New York, 1980), pp. 143–201.

E. Grossman, AT User’s Manual (Airhead Software, 2069 Bluff Street, Boulder, Colo. 80302, 1989).

M. L. Salby, Fundamentals of Atmospheric Physics (Academic, New York, 1996), Chap. 8.

Eccosorb AN-72, Emerson & Cumming, Inc., Woburn, Mass. 01888.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Plots of the f t ) and h t ) functions defined by Eqs. (26) and (29). Multiplication of f t ) by LH, the temperature drop across an H2O scale height, gives the departure of the sky’s effective emission temperature from T s (0) [Eq. (25)]; h t ) serves an analogous role in calculation of Δt(ν) [Eq. (28)].

Fig. 2
Fig. 2

Weather logs for 6 February 1996 versus scan number: (a) Ambient temperature. (b) Local humidity. (c) Zenith opacity at 225 GHz provided by the taumeter. The absolute calibration is likely low by approximately 30–50%, but time variations are accurately reflected in the data. (d) Telescope elevation angle. Four skydips corresponding to the four filters can be discerned in the order 350, 450, 800, and 600 μm.

Fig. 3
Fig. 3

(a) Atmospheric transmission spectra t 1(ν) measured with the 800- and 600-μm filters for telescope zenith angles corresponding to air masses of 1.00, 1.35, and 1.70 (curves from top to bottom). The spectral resolution for these and all subsequent data is 0.23 GHz. (b) Best fit η s (ν)/η c (ν) efficiency for the data of (a) binned to a resolution of 2 GHz (solid histogram) and the same after the Δt(ν) correction has been added (dashed–dotted histogram). (c) Difference between the corrected zenith transmission spectrum, t(ν), and the best-fit zenith transmission derived from a fit to the full skydip data set.

Fig. 4
Fig. 4

(a) Measured t 1(ν) transmission spectra in (a) the 450-μm atmospheric window, (b) the 350-μm atmospheric window. The positions of the stronger O3 lines are marked with ticks just below the zero level. Some ringing is present because no apodization was applied.

Fig. 5
Fig. 5

(a) Combined fully calibrated t(ν) zenith transmission spectrum covering the 333–985-GHz range, with all broad lines (from H2O, HDO, and O2) identified. (b) Corresponding zenith opacity spectrum, normalized by the 345-GHz opacity.

Fig. 6
Fig. 6

Best-fit zenith transmission models (thin, dark curves) superposed upon the measured t(ν) spectra (plotted as light-gray bands, the widths of which represent average error bars) for the (a) van Vleck–Weisskopf and (b) kinetic line profiles. The best-fit empirical continua included for the two cases are plotted above the model spectra, and their parameters are given in Table 1 (models 3a and 3b, respectively). The residuals between the data and models are given in the smaller panels below the spectra on the same vertical scale. The narrow spikes in the residuals correspond mostly to O2 and O3 lines.

Tables (1)

Tables Icon

Table 1 Model Results for van Vleck–Weisskopf and Kinetic Line Shapes

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

V g ν - V c ν = G ν η c ν P g ν - P c ν .
V g ν - V s ν = G ν [ P g ν - ( η s ν P s ν + exp - τ t ν P b ν + 1 - η s ν P g ν ) ] .
V g ν - V s ν = G ν η s ν P g ν - P s ν - exp - τ t ν P b ν ,
m ν V g ν - V s ν V g ν - V c ν = η s ν η c ν P g ν - P s ν - exp - τ t ν P b ν P g ν - P c ν .
m ν = η s ν η c ν 1 exp h ν / kT g - 1 - 1 - exp - τ t ν exp h ν / kT e - 1 - exp - τ t ν exp h ν / kT b - 1 1 exp h ν / kT g - 1 - 1 exp h ν / kT c - 1 .
t ν = 1 - exp h ν / kT e - 1 exp h ν / kT g - 1 1 - m ν η c ν η s ν 1 - exp h ν / kT g - 1 exp h ν / kT c - 1 1 - exp h ν / kT e - 1 exp h ν / kT b - 1 .
t ν = 1 - exp h ν / kT e - 1 exp h ν / kT g - 1 × 1 - m ν η c ν η s ν 1 - exp h ν / kT g - 1 exp h ν / kT c - 1 .
t ν = T g - T c T g V g ν - V s ν V g ν - V c ν .
t 1 ν m ν η c ν η s ν 1 - exp h ν / kT g - 1 exp h ν / kT c - 1 .
t ν = 1 - exp h ν / kT e - 1 exp h ν / kT g - 1 1 - t 1 ν .
t ν = 1 - 1 - Δ T T g h ν / kT g 1 - exp - h ν / kT g 1 - t 1 ν ,
t ν = t 1 ν + Δ T T g h ν / kT g 1 - exp - h ν / kT g 1 - t 1 ν ,
Δ t ν = Δ T T g h ν / kT g 1 - exp - h ν / kT g 1 - t 1 ν
t 1 ν = t ν - Δ T T g h ν / kT g 1 - exp - h ν / kT g 1 - t ν
ln t a i ν = ln η s ν η c ν - a i τ t , a = 1 ν .
I ν = 0   B ν T s z exp - τ z ν d τ z ,
I ν = B ν T e ν 1 - exp - τ t ( ν .
B ν T e ν = 1 1 - exp - τ t ν 0   B ν T s z exp - τ z ν d τ z .
B ν T e ν = 1 1 - exp - τ t ν 0   B ν T s 0 exp - τ z ν d τ z + 0 d B ν T s z d T | z = 0   Δ T s z exp - τ z ν d τ z .
B ν T e ν = B ν T s 0 + B ν T s 0 T s 0 × h ν / kT s 0 1 - exp - h ν / kT s 0 1 1 - exp - τ t ν × 0   Δ T s z exp - τ z ν d τ z .
T e ν = T s 0 + 1 1 - exp - τ t ν × 0   Δ T s z exp - τ z ν d τ z .
T e τ t = T s 0 + 1 1 - exp - τ t × 0 Δ T s z exp - τ z d τ z d z d z ,
τ z = τ t 1 - exp - z / H .
T e τ t = T s 0 - L H τ t 1 - exp - τ t × 0   z   exp - z / H exp - τ z d z .
T e τ t = T s 0 - LH   τ t 1 - exp - τ t × 0   s   exp - s exp - τ s d s ,
T e τ t - T s 0 = - LHf τ t ,
f τ t τ t 1 - exp - τ t 0   s   exp - s × exp - τ t 1 - exp - s d s .
Δ t ν = T s 0 - T g - LHf τ t T g h ν / kT g 1 - exp - h ν / kT g × 1 - t 1 ν .
Δ t ν = - LH T g h ν / kT g 1 - exp - h ν / kT g   h τ t ,
h τ t 1 - exp - τ t f τ t = τ t 0   s   exp - s exp - τ t 1 - exp - s d s ,
T s 0 - T g T g = t 1 t 1 - 1 1 - exp - h ν / kT g h ν / kT g .
τ c ν = S ν ν 0 α   N H 2 O ,
d τ c d α = SN H 2 O ν ν 0 α ln ν ν 0 = τ c ν ln ν ν 0 .
d α = d t t ν ln t ν ln ν ν 0 .
d α e d t ln ν ν 0 .
B ν T = 2 h ν 3 / c 2 exp h ν / kT - 1 ,
d B ν d T = B ν T h ν / kT 1 - exp - h ν / kT .
B ν T B ν T 0 = 1 + T - T 0 T 0 h ν / kT 0 1 - exp - h ν / kT 0 .
B ν T B ν T 0 = 1 - T - T 0 T 0 1 + h ν 2 kT 0 = 1 - T - T 0 T 0 - T - T 0 T 0 h ν 2 kT 0 .
t ν = 1 - T g T e 1 - m ν η c ν η s ν 1 - exp h ν / kT g - 1 exp h ν / kT c - 1

Metrics