Abstract

We report some preliminary results on the fabrication and optical characterization of high-refractive-index thin films of titania doped with Co2+. These films were supported on silica plates that were chemically activated to attach both phases. The titania films were produced by the solgel method at room temperature and slowly annealed from room temperature to 230 °C; their thickness was approximately 600 Å. The optical characterizations were obtained by the use of spectroscopic ellipsometry, where the dielectric function of the material was obtained as a function of the wavelength. Additionally, the ellipsometric function was modeled to obtain the porosity of the films and their thickness.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Brinker, G. W. Sherer, Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing (Academic, New York, 1989).
  2. H. Kogelnik, “Theory of dielectric waveguides,” in Topics in Applied Physics, T. Tamir, ed. (Springer-Verlag, New York, 1979), Chap. 2.
  3. G. I. Stegeman, C. T. Seaton, R. Zanoni, “Organic films in nonlinear integrated optics,” Thin Solid Films 152, 231 (1987).
    [CrossRef]
  4. G. I. Stegeman, R. H. Stolen, “Waveguides and fibers for nonlinear optics,” J. Opt. Soc. Am. B 6, 652–662 (1989).
    [CrossRef]
  5. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984).
  6. G. I. Stegeman, C. Liao, “Efficient SHG of IR radiation by guided waves in MNA,” Appl. Opt. 22, 2518–2519 (1983).
    [CrossRef] [PubMed]
  7. G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, A. A. Maradudin, “Nonlinear integrated optics,” J. Appl. Phys. 58, 2453–2459 (1985).
    [CrossRef]
  8. S. Y. Kim, “Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods,” Appl. Opt. 35, 6703–6707 (1996).
    [CrossRef] [PubMed]
  9. R. K. Iler, The Chemistry of Silica, (Wiley-Interscience, New York, 1979).
  10. W. Kern, D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev.187–205 (1970).
  11. E. Haro-Poniatowski, R. Rodríguez-Talavera, M. de la Cruz Heredia, O. Cano-Corona, “Crystallization of nanosized titania particles prepared by sol-gel process,” J. Mater. Res. 9, 2102–2108 (1994).
    [CrossRef]
  12. R. M. A. Azzam, N. M. Bashora, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  13. D. E. Aspnes, A. A. Studna, “High precision scanning ellipsometer,” Appl. Opt. 14, 220–228 (1975).
    [PubMed]
  14. A. R. Forouhi, L. Bloomer, “Optical dispersion relations for amorphous semiconductor and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
    [CrossRef]
  15. R. Landauer, Proceedings of the First International Conference on the Electrical Transport and Optical Properties of Inhomogeneous Media (American Institute of Physics, New York, 1977), p. 15.
  16. P. B. Johnson, R. W. Christy, “Optical constants of transitions metals: Ti, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
    [CrossRef]
  17. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), p. 739.
  18. J. Nagpal, R. M. Davis, S. B. Desu, “Novel thin films of titanium dioxide particles synthesized by a sol-gel process,” J. Mater. Res. 10, 3068–3078 (1995).
    [CrossRef]
  19. J. P. Marton, J. R. Lemon, “Optical properties of aggregated metal system. I. theory,” Phys. Rev. B 4, 271–280 (1971).
    [CrossRef]

1996 (1)

1995 (1)

J. Nagpal, R. M. Davis, S. B. Desu, “Novel thin films of titanium dioxide particles synthesized by a sol-gel process,” J. Mater. Res. 10, 3068–3078 (1995).
[CrossRef]

1994 (1)

E. Haro-Poniatowski, R. Rodríguez-Talavera, M. de la Cruz Heredia, O. Cano-Corona, “Crystallization of nanosized titania particles prepared by sol-gel process,” J. Mater. Res. 9, 2102–2108 (1994).
[CrossRef]

1989 (1)

1987 (1)

G. I. Stegeman, C. T. Seaton, R. Zanoni, “Organic films in nonlinear integrated optics,” Thin Solid Films 152, 231 (1987).
[CrossRef]

1986 (1)

A. R. Forouhi, L. Bloomer, “Optical dispersion relations for amorphous semiconductor and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[CrossRef]

1985 (1)

G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, A. A. Maradudin, “Nonlinear integrated optics,” J. Appl. Phys. 58, 2453–2459 (1985).
[CrossRef]

1983 (1)

1975 (1)

1974 (1)

P. B. Johnson, R. W. Christy, “Optical constants of transitions metals: Ti, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[CrossRef]

1971 (1)

J. P. Marton, J. R. Lemon, “Optical properties of aggregated metal system. I. theory,” Phys. Rev. B 4, 271–280 (1971).
[CrossRef]

1970 (1)

W. Kern, D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev.187–205 (1970).

Ariyasu, J.

G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, A. A. Maradudin, “Nonlinear integrated optics,” J. Appl. Phys. 58, 2453–2459 (1985).
[CrossRef]

Aspnes, D. E.

Azzam, R. M. A.

R. M. A. Azzam, N. M. Bashora, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Bashora, N. M.

R. M. A. Azzam, N. M. Bashora, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Bloomer, L.

A. R. Forouhi, L. Bloomer, “Optical dispersion relations for amorphous semiconductor and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[CrossRef]

Brinker, C. J.

C. J. Brinker, G. W. Sherer, Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing (Academic, New York, 1989).

Cano-Corona, O.

E. Haro-Poniatowski, R. Rodríguez-Talavera, M. de la Cruz Heredia, O. Cano-Corona, “Crystallization of nanosized titania particles prepared by sol-gel process,” J. Mater. Res. 9, 2102–2108 (1994).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of transitions metals: Ti, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[CrossRef]

Davis, R. M.

J. Nagpal, R. M. Davis, S. B. Desu, “Novel thin films of titanium dioxide particles synthesized by a sol-gel process,” J. Mater. Res. 10, 3068–3078 (1995).
[CrossRef]

de la Cruz Heredia, M.

E. Haro-Poniatowski, R. Rodríguez-Talavera, M. de la Cruz Heredia, O. Cano-Corona, “Crystallization of nanosized titania particles prepared by sol-gel process,” J. Mater. Res. 9, 2102–2108 (1994).
[CrossRef]

Desu, S. B.

J. Nagpal, R. M. Davis, S. B. Desu, “Novel thin films of titanium dioxide particles synthesized by a sol-gel process,” J. Mater. Res. 10, 3068–3078 (1995).
[CrossRef]

Forouhi, A. R.

A. R. Forouhi, L. Bloomer, “Optical dispersion relations for amorphous semiconductor and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[CrossRef]

Haro-Poniatowski, E.

E. Haro-Poniatowski, R. Rodríguez-Talavera, M. de la Cruz Heredia, O. Cano-Corona, “Crystallization of nanosized titania particles prepared by sol-gel process,” J. Mater. Res. 9, 2102–2108 (1994).
[CrossRef]

Iler, R. K.

R. K. Iler, The Chemistry of Silica, (Wiley-Interscience, New York, 1979).

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of transitions metals: Ti, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[CrossRef]

Kern, W.

W. Kern, D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev.187–205 (1970).

Kim, S. Y.

Kogelnik, H.

H. Kogelnik, “Theory of dielectric waveguides,” in Topics in Applied Physics, T. Tamir, ed. (Springer-Verlag, New York, 1979), Chap. 2.

Landauer, R.

R. Landauer, Proceedings of the First International Conference on the Electrical Transport and Optical Properties of Inhomogeneous Media (American Institute of Physics, New York, 1977), p. 15.

Lemon, J. R.

J. P. Marton, J. R. Lemon, “Optical properties of aggregated metal system. I. theory,” Phys. Rev. B 4, 271–280 (1971).
[CrossRef]

Liao, C.

Maradudin, A. A.

G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, A. A. Maradudin, “Nonlinear integrated optics,” J. Appl. Phys. 58, 2453–2459 (1985).
[CrossRef]

Marton, J. P.

J. P. Marton, J. R. Lemon, “Optical properties of aggregated metal system. I. theory,” Phys. Rev. B 4, 271–280 (1971).
[CrossRef]

Nagpal, J.

J. Nagpal, R. M. Davis, S. B. Desu, “Novel thin films of titanium dioxide particles synthesized by a sol-gel process,” J. Mater. Res. 10, 3068–3078 (1995).
[CrossRef]

Puotinen, D. A.

W. Kern, D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev.187–205 (1970).

Rodríguez-Talavera, R.

E. Haro-Poniatowski, R. Rodríguez-Talavera, M. de la Cruz Heredia, O. Cano-Corona, “Crystallization of nanosized titania particles prepared by sol-gel process,” J. Mater. Res. 9, 2102–2108 (1994).
[CrossRef]

Seaton, C. T.

G. I. Stegeman, C. T. Seaton, R. Zanoni, “Organic films in nonlinear integrated optics,” Thin Solid Films 152, 231 (1987).
[CrossRef]

G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, A. A. Maradudin, “Nonlinear integrated optics,” J. Appl. Phys. 58, 2453–2459 (1985).
[CrossRef]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984).

Sherer, G. W.

C. J. Brinker, G. W. Sherer, Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing (Academic, New York, 1989).

Stegeman, G. I.

G. I. Stegeman, R. H. Stolen, “Waveguides and fibers for nonlinear optics,” J. Opt. Soc. Am. B 6, 652–662 (1989).
[CrossRef]

G. I. Stegeman, C. T. Seaton, R. Zanoni, “Organic films in nonlinear integrated optics,” Thin Solid Films 152, 231 (1987).
[CrossRef]

G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, A. A. Maradudin, “Nonlinear integrated optics,” J. Appl. Phys. 58, 2453–2459 (1985).
[CrossRef]

G. I. Stegeman, C. Liao, “Efficient SHG of IR radiation by guided waves in MNA,” Appl. Opt. 22, 2518–2519 (1983).
[CrossRef] [PubMed]

Stolen, R. H.

Studna, A. A.

Wallis, R. F.

G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, A. A. Maradudin, “Nonlinear integrated optics,” J. Appl. Phys. 58, 2453–2459 (1985).
[CrossRef]

Zanoni, R.

G. I. Stegeman, C. T. Seaton, R. Zanoni, “Organic films in nonlinear integrated optics,” Thin Solid Films 152, 231 (1987).
[CrossRef]

Appl. Opt. (3)

J. Appl. Phys. (1)

G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, A. A. Maradudin, “Nonlinear integrated optics,” J. Appl. Phys. 58, 2453–2459 (1985).
[CrossRef]

J. Mater. Res. (2)

E. Haro-Poniatowski, R. Rodríguez-Talavera, M. de la Cruz Heredia, O. Cano-Corona, “Crystallization of nanosized titania particles prepared by sol-gel process,” J. Mater. Res. 9, 2102–2108 (1994).
[CrossRef]

J. Nagpal, R. M. Davis, S. B. Desu, “Novel thin films of titanium dioxide particles synthesized by a sol-gel process,” J. Mater. Res. 10, 3068–3078 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Phys. Rev. B (3)

J. P. Marton, J. R. Lemon, “Optical properties of aggregated metal system. I. theory,” Phys. Rev. B 4, 271–280 (1971).
[CrossRef]

A. R. Forouhi, L. Bloomer, “Optical dispersion relations for amorphous semiconductor and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[CrossRef]

P. B. Johnson, R. W. Christy, “Optical constants of transitions metals: Ti, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[CrossRef]

RCA Rev. (1)

W. Kern, D. A. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Rev.187–205 (1970).

Thin Solid Films (1)

G. I. Stegeman, C. T. Seaton, R. Zanoni, “Organic films in nonlinear integrated optics,” Thin Solid Films 152, 231 (1987).
[CrossRef]

Other (7)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984).

C. J. Brinker, G. W. Sherer, Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing (Academic, New York, 1989).

H. Kogelnik, “Theory of dielectric waveguides,” in Topics in Applied Physics, T. Tamir, ed. (Springer-Verlag, New York, 1979), Chap. 2.

R. M. A. Azzam, N. M. Bashora, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

R. K. Iler, The Chemistry of Silica, (Wiley-Interscience, New York, 1979).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), p. 739.

R. Landauer, Proceedings of the First International Conference on the Electrical Transport and Optical Properties of Inhomogeneous Media (American Institute of Physics, New York, 1977), p. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

SEM micrograph of sample S4.

Fig. 2
Fig. 2

Height profile for sample S4, surface measured in a perpendicular direction with respect to the edge.

Fig. 3
Fig. 3

Height profile for sample S4; the cursor shows the position where there are no effects due the surface tension of sol.

Fig. 4
Fig. 4

Tan Ψ versus energy of the incident light for four samples: (a) S1, (b) S2, (c) S3, and (d) S4.

Fig. 5
Fig. 5

Cos Δ versus energy of the incident light for the same four samples.

Fig. 6
Fig. 6

Refractive index versus porosity for samples S0, S1, S2, and S4.

Fig. 7
Fig. 7

Function dielectric (ε1), and imaginary part (ε2) versus energy of the incident light for four concentrations of the cobalt in the films.

Fig. 8
Fig. 8

Volume fraction (f m ) versus concentration of the cobalt in the films.

Tables (2)

Tables Icon

Table 1 Molar Composition of Titania Films at Different Cobalt Concentrations

Tables Icon

Table 2 System Parameters Obtained from Fitting Procedure

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρ = tan   Ψ e i Δ = E rp / E rs E ip / E is = E rp / E ip E rs / E is = r p r s ,
ε s ε a = sin 2   ϕ 0 + sin 2   ϕ 0 tan 2   ϕ 0 1 - ρ 1 + ρ 2 ,
σ 2 = 1 N - m - 1 1 N tan   Ψ exp - tan   Ψ teo 2 + cos   Δ exp - cos   Δ teo 2 .
n E = n + B 0 E + C 0 E 2 - BE + C ,
k E = A E - E g 2 E 2 - BE + C ,     E > E g ,
ε - ε a ε + 2 ε a = f m ε m - ε a ε m + 2 ε a ,
ε a - 1 ε a + 2 = f dens ε dens - 1 ε dens + 2 ,

Metrics