Abstract

In the terahertz-wave region, fabrication of an antireflection (AR) coating is difficult because it must be as thick as several tens of micrometers, which is far thicker than that used in the optical region. We discuss a lapping method for fabricating an AR layer with a desired thickness for terahertz-wave optical devices. To demonstrate this method, we glued a thin fused-quartz plate to a surface of an undoped Ge or GaAs wafer and polished it to a thickness of one-quarter wavelength. This reduced the reflectivity of the AR surface to 1/720 of the reflection of an uncoated surface, as expected from optical theory.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. DeCrosta, J. J. Hackenberg, J. H. Linn, “Characterization of high oxygen: tetraethylorthosilicate ratio plasma-enhanced chemical vapor deposited films,” J. Electrochem. Soc. 143, 1079–1084 (1996).
    [CrossRef]
  2. K. R. Armstrong, F. J. Low, “Far-infrared filters utilizing small particle scattering and antireflection coatings,” Appl. Opt. 13, 425–430 (1974).
    [CrossRef] [PubMed]
  3. J. Shao, J. A. Dobrowolski, “Multilayer interference filters for the far-infrared and submillimeter regions,” Appl. Opt. 32, 2361–2370 (1993).
    [CrossRef] [PubMed]
  4. N. Hiromoto, M. Fujiwara, H. Shibai, H. Okuda, “Ge:Ga far-infrared photoconductors for space applications,” Jpn. J. Appl. Phys. 35, 1676–1680 (1996).
    [CrossRef]
  5. N. Hiromoto, T. Itabe, H. Shibai, H. Matsuhara, T. Nakagawa, H. Okuda, “Three-element stressed Ge:Ga photoconductor array for the infrared telescope in space,” Appl. Opt. 31, 460–465 (1992).
    [CrossRef] [PubMed]
  6. R. Katterloher, G. Jakob, E. Bauser, S. Zehender, E. E. Haller, J. Beeman, Th. Henning, G. Pilbratt, “Recent results from the development of a far infra-red n-type GaAs detector array for FIRST,” in Infrared Spaceborne Remote Sensing III, M. S. Scholl, B. F. Andresen, eds., Proc. SPIE2553, 524–535 (1995).
  7. E. Gornik, ed., Special issue on far-infrared semiconductor lasers, Opt. Quantum Electron. 23, S111–S349 (1991).
  8. K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 2483–2485 (1996).
    [CrossRef]
  9. K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Characteristics of THz-wave radiation using a monolithic grating coupler on a LiNbO3 crystal,” Int. J. Infrared Millimeter Waves 17, 1839–1850 (1996).
    [CrossRef]
  10. K. Kawase, K. Nakamura, M. Sato, T. Taniuchi, H. Ito, “Uni-directional radiation of widely tunable THz-wave using a prism coupler under non-collinear phase matching condition,” Appl. Phys. Lett. 71, 753–755 (1997).
    [CrossRef]
  11. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), pp. 429–444, 465–478, 749–763.
  12. C. M. Randall, R. D. Rawcliffe, “Refractive indices of germanium, silicon, and fused quartz in the far infrared,” Appl. Opt. 6, 1889–1895 (1967).
    [CrossRef] [PubMed]

1997 (1)

K. Kawase, K. Nakamura, M. Sato, T. Taniuchi, H. Ito, “Uni-directional radiation of widely tunable THz-wave using a prism coupler under non-collinear phase matching condition,” Appl. Phys. Lett. 71, 753–755 (1997).
[CrossRef]

1996 (4)

D. A. DeCrosta, J. J. Hackenberg, J. H. Linn, “Characterization of high oxygen: tetraethylorthosilicate ratio plasma-enhanced chemical vapor deposited films,” J. Electrochem. Soc. 143, 1079–1084 (1996).
[CrossRef]

N. Hiromoto, M. Fujiwara, H. Shibai, H. Okuda, “Ge:Ga far-infrared photoconductors for space applications,” Jpn. J. Appl. Phys. 35, 1676–1680 (1996).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 2483–2485 (1996).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Characteristics of THz-wave radiation using a monolithic grating coupler on a LiNbO3 crystal,” Int. J. Infrared Millimeter Waves 17, 1839–1850 (1996).
[CrossRef]

1993 (1)

1992 (1)

1991 (1)

E. Gornik, ed., Special issue on far-infrared semiconductor lasers, Opt. Quantum Electron. 23, S111–S349 (1991).

1974 (1)

1967 (1)

Armstrong, K. R.

Bauser, E.

R. Katterloher, G. Jakob, E. Bauser, S. Zehender, E. E. Haller, J. Beeman, Th. Henning, G. Pilbratt, “Recent results from the development of a far infra-red n-type GaAs detector array for FIRST,” in Infrared Spaceborne Remote Sensing III, M. S. Scholl, B. F. Andresen, eds., Proc. SPIE2553, 524–535 (1995).

Beeman, J.

R. Katterloher, G. Jakob, E. Bauser, S. Zehender, E. E. Haller, J. Beeman, Th. Henning, G. Pilbratt, “Recent results from the development of a far infra-red n-type GaAs detector array for FIRST,” in Infrared Spaceborne Remote Sensing III, M. S. Scholl, B. F. Andresen, eds., Proc. SPIE2553, 524–535 (1995).

DeCrosta, D. A.

D. A. DeCrosta, J. J. Hackenberg, J. H. Linn, “Characterization of high oxygen: tetraethylorthosilicate ratio plasma-enhanced chemical vapor deposited films,” J. Electrochem. Soc. 143, 1079–1084 (1996).
[CrossRef]

Dobrowolski, J. A.

Fujiwara, M.

N. Hiromoto, M. Fujiwara, H. Shibai, H. Okuda, “Ge:Ga far-infrared photoconductors for space applications,” Jpn. J. Appl. Phys. 35, 1676–1680 (1996).
[CrossRef]

Hackenberg, J. J.

D. A. DeCrosta, J. J. Hackenberg, J. H. Linn, “Characterization of high oxygen: tetraethylorthosilicate ratio plasma-enhanced chemical vapor deposited films,” J. Electrochem. Soc. 143, 1079–1084 (1996).
[CrossRef]

Haller, E. E.

R. Katterloher, G. Jakob, E. Bauser, S. Zehender, E. E. Haller, J. Beeman, Th. Henning, G. Pilbratt, “Recent results from the development of a far infra-red n-type GaAs detector array for FIRST,” in Infrared Spaceborne Remote Sensing III, M. S. Scholl, B. F. Andresen, eds., Proc. SPIE2553, 524–535 (1995).

Henning, Th.

R. Katterloher, G. Jakob, E. Bauser, S. Zehender, E. E. Haller, J. Beeman, Th. Henning, G. Pilbratt, “Recent results from the development of a far infra-red n-type GaAs detector array for FIRST,” in Infrared Spaceborne Remote Sensing III, M. S. Scholl, B. F. Andresen, eds., Proc. SPIE2553, 524–535 (1995).

Hiromoto, N.

N. Hiromoto, M. Fujiwara, H. Shibai, H. Okuda, “Ge:Ga far-infrared photoconductors for space applications,” Jpn. J. Appl. Phys. 35, 1676–1680 (1996).
[CrossRef]

N. Hiromoto, T. Itabe, H. Shibai, H. Matsuhara, T. Nakagawa, H. Okuda, “Three-element stressed Ge:Ga photoconductor array for the infrared telescope in space,” Appl. Opt. 31, 460–465 (1992).
[CrossRef] [PubMed]

Itabe, T.

Ito, H.

K. Kawase, K. Nakamura, M. Sato, T. Taniuchi, H. Ito, “Uni-directional radiation of widely tunable THz-wave using a prism coupler under non-collinear phase matching condition,” Appl. Phys. Lett. 71, 753–755 (1997).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Characteristics of THz-wave radiation using a monolithic grating coupler on a LiNbO3 crystal,” Int. J. Infrared Millimeter Waves 17, 1839–1850 (1996).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 2483–2485 (1996).
[CrossRef]

Jakob, G.

R. Katterloher, G. Jakob, E. Bauser, S. Zehender, E. E. Haller, J. Beeman, Th. Henning, G. Pilbratt, “Recent results from the development of a far infra-red n-type GaAs detector array for FIRST,” in Infrared Spaceborne Remote Sensing III, M. S. Scholl, B. F. Andresen, eds., Proc. SPIE2553, 524–535 (1995).

Katterloher, R.

R. Katterloher, G. Jakob, E. Bauser, S. Zehender, E. E. Haller, J. Beeman, Th. Henning, G. Pilbratt, “Recent results from the development of a far infra-red n-type GaAs detector array for FIRST,” in Infrared Spaceborne Remote Sensing III, M. S. Scholl, B. F. Andresen, eds., Proc. SPIE2553, 524–535 (1995).

Kawase, K.

K. Kawase, K. Nakamura, M. Sato, T. Taniuchi, H. Ito, “Uni-directional radiation of widely tunable THz-wave using a prism coupler under non-collinear phase matching condition,” Appl. Phys. Lett. 71, 753–755 (1997).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Characteristics of THz-wave radiation using a monolithic grating coupler on a LiNbO3 crystal,” Int. J. Infrared Millimeter Waves 17, 1839–1850 (1996).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 2483–2485 (1996).
[CrossRef]

Linn, J. H.

D. A. DeCrosta, J. J. Hackenberg, J. H. Linn, “Characterization of high oxygen: tetraethylorthosilicate ratio plasma-enhanced chemical vapor deposited films,” J. Electrochem. Soc. 143, 1079–1084 (1996).
[CrossRef]

Low, F. J.

Matsuhara, H.

Nakagawa, T.

Nakamura, K.

K. Kawase, K. Nakamura, M. Sato, T. Taniuchi, H. Ito, “Uni-directional radiation of widely tunable THz-wave using a prism coupler under non-collinear phase matching condition,” Appl. Phys. Lett. 71, 753–755 (1997).
[CrossRef]

Okuda, H.

N. Hiromoto, M. Fujiwara, H. Shibai, H. Okuda, “Ge:Ga far-infrared photoconductors for space applications,” Jpn. J. Appl. Phys. 35, 1676–1680 (1996).
[CrossRef]

N. Hiromoto, T. Itabe, H. Shibai, H. Matsuhara, T. Nakagawa, H. Okuda, “Three-element stressed Ge:Ga photoconductor array for the infrared telescope in space,” Appl. Opt. 31, 460–465 (1992).
[CrossRef] [PubMed]

Pilbratt, G.

R. Katterloher, G. Jakob, E. Bauser, S. Zehender, E. E. Haller, J. Beeman, Th. Henning, G. Pilbratt, “Recent results from the development of a far infra-red n-type GaAs detector array for FIRST,” in Infrared Spaceborne Remote Sensing III, M. S. Scholl, B. F. Andresen, eds., Proc. SPIE2553, 524–535 (1995).

Randall, C. M.

Rawcliffe, R. D.

Sato, M.

K. Kawase, K. Nakamura, M. Sato, T. Taniuchi, H. Ito, “Uni-directional radiation of widely tunable THz-wave using a prism coupler under non-collinear phase matching condition,” Appl. Phys. Lett. 71, 753–755 (1997).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Characteristics of THz-wave radiation using a monolithic grating coupler on a LiNbO3 crystal,” Int. J. Infrared Millimeter Waves 17, 1839–1850 (1996).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 2483–2485 (1996).
[CrossRef]

Shao, J.

Shibai, H.

N. Hiromoto, M. Fujiwara, H. Shibai, H. Okuda, “Ge:Ga far-infrared photoconductors for space applications,” Jpn. J. Appl. Phys. 35, 1676–1680 (1996).
[CrossRef]

N. Hiromoto, T. Itabe, H. Shibai, H. Matsuhara, T. Nakagawa, H. Okuda, “Three-element stressed Ge:Ga photoconductor array for the infrared telescope in space,” Appl. Opt. 31, 460–465 (1992).
[CrossRef] [PubMed]

Taniuchi, T.

K. Kawase, K. Nakamura, M. Sato, T. Taniuchi, H. Ito, “Uni-directional radiation of widely tunable THz-wave using a prism coupler under non-collinear phase matching condition,” Appl. Phys. Lett. 71, 753–755 (1997).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Characteristics of THz-wave radiation using a monolithic grating coupler on a LiNbO3 crystal,” Int. J. Infrared Millimeter Waves 17, 1839–1850 (1996).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 2483–2485 (1996).
[CrossRef]

Zehender, S.

R. Katterloher, G. Jakob, E. Bauser, S. Zehender, E. E. Haller, J. Beeman, Th. Henning, G. Pilbratt, “Recent results from the development of a far infra-red n-type GaAs detector array for FIRST,” in Infrared Spaceborne Remote Sensing III, M. S. Scholl, B. F. Andresen, eds., Proc. SPIE2553, 524–535 (1995).

Appl. Opt. (4)

Appl. Phys. Lett. (2)

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 2483–2485 (1996).
[CrossRef]

K. Kawase, K. Nakamura, M. Sato, T. Taniuchi, H. Ito, “Uni-directional radiation of widely tunable THz-wave using a prism coupler under non-collinear phase matching condition,” Appl. Phys. Lett. 71, 753–755 (1997).
[CrossRef]

Int. J. Infrared Millimeter Waves (1)

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Characteristics of THz-wave radiation using a monolithic grating coupler on a LiNbO3 crystal,” Int. J. Infrared Millimeter Waves 17, 1839–1850 (1996).
[CrossRef]

J. Electrochem. Soc. (1)

D. A. DeCrosta, J. J. Hackenberg, J. H. Linn, “Characterization of high oxygen: tetraethylorthosilicate ratio plasma-enhanced chemical vapor deposited films,” J. Electrochem. Soc. 143, 1079–1084 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Hiromoto, M. Fujiwara, H. Shibai, H. Okuda, “Ge:Ga far-infrared photoconductors for space applications,” Jpn. J. Appl. Phys. 35, 1676–1680 (1996).
[CrossRef]

Opt. Quantum Electron. (1)

E. Gornik, ed., Special issue on far-infrared semiconductor lasers, Opt. Quantum Electron. 23, S111–S349 (1991).

Other (2)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), pp. 429–444, 465–478, 749–763.

R. Katterloher, G. Jakob, E. Bauser, S. Zehender, E. E. Haller, J. Beeman, Th. Henning, G. Pilbratt, “Recent results from the development of a far infra-red n-type GaAs detector array for FIRST,” in Infrared Spaceborne Remote Sensing III, M. S. Scholl, B. F. Andresen, eds., Proc. SPIE2553, 524–535 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Calculated reflectance of the AR surface of a Ge and a GaAs wafer coated with fused quartz.

Fig. 2
Fig. 2

Side view of clamping apparatus. The movable plate is pressed with three micrometers, and distance d is monitored by three thickness gauges. (The third gauge is behind the middle micrometer.)

Fig. 3
Fig. 3

Measured absorption coefficient of the UV-hardening optical adhesive (NOA61).

Fig. 4
Fig. 4

Measured transmittance spectrum of the Ge wafer (2066 μm thick) with a fused-quartz AR coat (22 μm thick) on one surface. The center frequency is 58 cm-1 (=172 μm), where transmittance is 57%.

Fig. 5
Fig. 5

Measured transmittance spectrum of the uncoated Ge wafer (2066 μm thick).

Fig. 6
Fig. 6

Measured transmittance spectrum of the GaAs wafer (585 μm thick) with a fused-quartz AR coat (27 μm thick) on one surface. The center frequency is 47.5 cm-1 (=210 μm), where transmittance is 65%.

Fig. 7
Fig. 7

Measured transmittance spectrum of the uncoated GaAs wafer (585 μm thick).

Fig. 8
Fig. 8

Measured absorption coefficient of the undoped Ge.

Tables (1)

Tables Icon

Table 1 Theoretical and Experimental Performances of the Fused-Quartz AR Coat on One Surface of Ge and GaAs

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = 1 - 4 n c 2 n s + n s n c 2 + 2 + 1 n s + n s - n c 2 n s - n s n c 2 cos 2 2 π n c t c λ - 1 .
A = 4 R 1 R 2 1 / 2 T 2 1 - R 1 1 - R 2 1 - R 1 R 2 T 2 2 ,

Metrics