Abstract

The spectral complex optical constants in the visible and the near-infrared region of VO2 and V1-xWxO2 films deposited on glass substrates were determined from observed reflectance and transmittance spectra for which the least-squares method was used. In the metallic phase, the optical properties were characterized by the Drude model in wavelength regions longer than 750 nm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Granqvist, “Energy-efficient windows: present and forthcoming technology,” in Materials Science for Solar Energy Conversion Systems, C. G. Granqvist, ed. (Pergamon, Oxford, UK, 1991), Chap. 5.
  2. C. G. Granqvist, “Window coatings for the future,” Thin Solid Films 193/194, 730–741 (1990).
    [CrossRef]
  3. C. Tang, P. Georgopoulos, M. E. Fine, J. B. Cohen, M. Nygren, G. S. Knapp, A. Aldred, “Local atomic and electronic arrangements in WxV1-xO2,” Phys. Rev. B 31, 1000–1011 (1985).
    [CrossRef]
  4. P. Jin, S. Tanemura, “Relationship between transition temperature and x in V1-xWxO2 films deposited by dual-target magnetron sputtering,” Jpn. J. Appl. Phys. 34, 2459–2460 (1995).
    [CrossRef]
  5. H. W. Verleur, A. S. Barker, C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
    [CrossRef]
  6. B. S. Borisov, S. T. Koretskaya, V. G. Mokerov, A. V. Rakov, S. G. Solov’ev, “Electrical and optical properties of VO2 near the semiconductor-semimetal transition point,” Sov. Phys. Solid State 12, 1763–1769 (1971).
  7. E. E. Chain, “Optical properties of vanadium dioxide and vanadium pentoxide thin films,” Appl. Opt. 30, 2782–2787 (1991).
    [CrossRef] [PubMed]
  8. F. C. Case, “Improved VO2 thin films for infrared switching,” Appl. Opt. 30, 4119–4123 (1991).
    [CrossRef] [PubMed]
  9. P. Jin, S. Tanemura, “Formation and thermochromism of VO2 films deposited by RF magnetron sputtering at low substrate temperature,” Jpn. J. Appl. Phys. 33, 1478–1483 (1994).
    [CrossRef]
  10. P. Jin, M. Tazawa, T. Miki, S. Tanemura, “Preparation of metal-doped thermochromic VO2 films for smart window coatings,” Trans. Mater. Res. Soc. Jpn. 18A, 533–536 (1994).
  11. P. Jin, M. Tazawa, K. Yoshimura, T. Miki, K. Igarashi, S. Tanemura, “Thermochromism of meta-doped VO2 films deposited by dual-target sputtering,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, V. Wittwer, C. G. Granqvist, C. M. Lampert, eds., Proc. SPIE2255, 415–422 (1994).
    [CrossRef]
  12. M. Thomas, E. E. Chain, “Optical properties and electron energy-loss diagnostics of vanadium dioxide thin films,” Thin Solid Films 204, L1–L4 (1991).
    [CrossRef]

1995 (1)

P. Jin, S. Tanemura, “Relationship between transition temperature and x in V1-xWxO2 films deposited by dual-target magnetron sputtering,” Jpn. J. Appl. Phys. 34, 2459–2460 (1995).
[CrossRef]

1994 (2)

P. Jin, S. Tanemura, “Formation and thermochromism of VO2 films deposited by RF magnetron sputtering at low substrate temperature,” Jpn. J. Appl. Phys. 33, 1478–1483 (1994).
[CrossRef]

P. Jin, M. Tazawa, T. Miki, S. Tanemura, “Preparation of metal-doped thermochromic VO2 films for smart window coatings,” Trans. Mater. Res. Soc. Jpn. 18A, 533–536 (1994).

1991 (3)

1990 (1)

C. G. Granqvist, “Window coatings for the future,” Thin Solid Films 193/194, 730–741 (1990).
[CrossRef]

1985 (1)

C. Tang, P. Georgopoulos, M. E. Fine, J. B. Cohen, M. Nygren, G. S. Knapp, A. Aldred, “Local atomic and electronic arrangements in WxV1-xO2,” Phys. Rev. B 31, 1000–1011 (1985).
[CrossRef]

1971 (1)

B. S. Borisov, S. T. Koretskaya, V. G. Mokerov, A. V. Rakov, S. G. Solov’ev, “Electrical and optical properties of VO2 near the semiconductor-semimetal transition point,” Sov. Phys. Solid State 12, 1763–1769 (1971).

1968 (1)

H. W. Verleur, A. S. Barker, C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
[CrossRef]

Aldred, A.

C. Tang, P. Georgopoulos, M. E. Fine, J. B. Cohen, M. Nygren, G. S. Knapp, A. Aldred, “Local atomic and electronic arrangements in WxV1-xO2,” Phys. Rev. B 31, 1000–1011 (1985).
[CrossRef]

Barker, A. S.

H. W. Verleur, A. S. Barker, C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
[CrossRef]

Berglund, C. N.

H. W. Verleur, A. S. Barker, C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
[CrossRef]

Borisov, B. S.

B. S. Borisov, S. T. Koretskaya, V. G. Mokerov, A. V. Rakov, S. G. Solov’ev, “Electrical and optical properties of VO2 near the semiconductor-semimetal transition point,” Sov. Phys. Solid State 12, 1763–1769 (1971).

Case, F. C.

Chain, E. E.

E. E. Chain, “Optical properties of vanadium dioxide and vanadium pentoxide thin films,” Appl. Opt. 30, 2782–2787 (1991).
[CrossRef] [PubMed]

M. Thomas, E. E. Chain, “Optical properties and electron energy-loss diagnostics of vanadium dioxide thin films,” Thin Solid Films 204, L1–L4 (1991).
[CrossRef]

Cohen, J. B.

C. Tang, P. Georgopoulos, M. E. Fine, J. B. Cohen, M. Nygren, G. S. Knapp, A. Aldred, “Local atomic and electronic arrangements in WxV1-xO2,” Phys. Rev. B 31, 1000–1011 (1985).
[CrossRef]

Fine, M. E.

C. Tang, P. Georgopoulos, M. E. Fine, J. B. Cohen, M. Nygren, G. S. Knapp, A. Aldred, “Local atomic and electronic arrangements in WxV1-xO2,” Phys. Rev. B 31, 1000–1011 (1985).
[CrossRef]

Georgopoulos, P.

C. Tang, P. Georgopoulos, M. E. Fine, J. B. Cohen, M. Nygren, G. S. Knapp, A. Aldred, “Local atomic and electronic arrangements in WxV1-xO2,” Phys. Rev. B 31, 1000–1011 (1985).
[CrossRef]

Granqvist, C. G.

C. G. Granqvist, “Window coatings for the future,” Thin Solid Films 193/194, 730–741 (1990).
[CrossRef]

C. G. Granqvist, “Energy-efficient windows: present and forthcoming technology,” in Materials Science for Solar Energy Conversion Systems, C. G. Granqvist, ed. (Pergamon, Oxford, UK, 1991), Chap. 5.

Igarashi, K.

P. Jin, M. Tazawa, K. Yoshimura, T. Miki, K. Igarashi, S. Tanemura, “Thermochromism of meta-doped VO2 films deposited by dual-target sputtering,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, V. Wittwer, C. G. Granqvist, C. M. Lampert, eds., Proc. SPIE2255, 415–422 (1994).
[CrossRef]

Jin, P.

P. Jin, S. Tanemura, “Relationship between transition temperature and x in V1-xWxO2 films deposited by dual-target magnetron sputtering,” Jpn. J. Appl. Phys. 34, 2459–2460 (1995).
[CrossRef]

P. Jin, S. Tanemura, “Formation and thermochromism of VO2 films deposited by RF magnetron sputtering at low substrate temperature,” Jpn. J. Appl. Phys. 33, 1478–1483 (1994).
[CrossRef]

P. Jin, M. Tazawa, T. Miki, S. Tanemura, “Preparation of metal-doped thermochromic VO2 films for smart window coatings,” Trans. Mater. Res. Soc. Jpn. 18A, 533–536 (1994).

P. Jin, M. Tazawa, K. Yoshimura, T. Miki, K. Igarashi, S. Tanemura, “Thermochromism of meta-doped VO2 films deposited by dual-target sputtering,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, V. Wittwer, C. G. Granqvist, C. M. Lampert, eds., Proc. SPIE2255, 415–422 (1994).
[CrossRef]

Knapp, G. S.

C. Tang, P. Georgopoulos, M. E. Fine, J. B. Cohen, M. Nygren, G. S. Knapp, A. Aldred, “Local atomic and electronic arrangements in WxV1-xO2,” Phys. Rev. B 31, 1000–1011 (1985).
[CrossRef]

Koretskaya, S. T.

B. S. Borisov, S. T. Koretskaya, V. G. Mokerov, A. V. Rakov, S. G. Solov’ev, “Electrical and optical properties of VO2 near the semiconductor-semimetal transition point,” Sov. Phys. Solid State 12, 1763–1769 (1971).

Miki, T.

P. Jin, M. Tazawa, T. Miki, S. Tanemura, “Preparation of metal-doped thermochromic VO2 films for smart window coatings,” Trans. Mater. Res. Soc. Jpn. 18A, 533–536 (1994).

P. Jin, M. Tazawa, K. Yoshimura, T. Miki, K. Igarashi, S. Tanemura, “Thermochromism of meta-doped VO2 films deposited by dual-target sputtering,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, V. Wittwer, C. G. Granqvist, C. M. Lampert, eds., Proc. SPIE2255, 415–422 (1994).
[CrossRef]

Mokerov, V. G.

B. S. Borisov, S. T. Koretskaya, V. G. Mokerov, A. V. Rakov, S. G. Solov’ev, “Electrical and optical properties of VO2 near the semiconductor-semimetal transition point,” Sov. Phys. Solid State 12, 1763–1769 (1971).

Nygren, M.

C. Tang, P. Georgopoulos, M. E. Fine, J. B. Cohen, M. Nygren, G. S. Knapp, A. Aldred, “Local atomic and electronic arrangements in WxV1-xO2,” Phys. Rev. B 31, 1000–1011 (1985).
[CrossRef]

Rakov, A. V.

B. S. Borisov, S. T. Koretskaya, V. G. Mokerov, A. V. Rakov, S. G. Solov’ev, “Electrical and optical properties of VO2 near the semiconductor-semimetal transition point,” Sov. Phys. Solid State 12, 1763–1769 (1971).

Solov’ev, S. G.

B. S. Borisov, S. T. Koretskaya, V. G. Mokerov, A. V. Rakov, S. G. Solov’ev, “Electrical and optical properties of VO2 near the semiconductor-semimetal transition point,” Sov. Phys. Solid State 12, 1763–1769 (1971).

Tanemura, S.

P. Jin, S. Tanemura, “Relationship between transition temperature and x in V1-xWxO2 films deposited by dual-target magnetron sputtering,” Jpn. J. Appl. Phys. 34, 2459–2460 (1995).
[CrossRef]

P. Jin, M. Tazawa, T. Miki, S. Tanemura, “Preparation of metal-doped thermochromic VO2 films for smart window coatings,” Trans. Mater. Res. Soc. Jpn. 18A, 533–536 (1994).

P. Jin, S. Tanemura, “Formation and thermochromism of VO2 films deposited by RF magnetron sputtering at low substrate temperature,” Jpn. J. Appl. Phys. 33, 1478–1483 (1994).
[CrossRef]

P. Jin, M. Tazawa, K. Yoshimura, T. Miki, K. Igarashi, S. Tanemura, “Thermochromism of meta-doped VO2 films deposited by dual-target sputtering,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, V. Wittwer, C. G. Granqvist, C. M. Lampert, eds., Proc. SPIE2255, 415–422 (1994).
[CrossRef]

Tang, C.

C. Tang, P. Georgopoulos, M. E. Fine, J. B. Cohen, M. Nygren, G. S. Knapp, A. Aldred, “Local atomic and electronic arrangements in WxV1-xO2,” Phys. Rev. B 31, 1000–1011 (1985).
[CrossRef]

Tazawa, M.

P. Jin, M. Tazawa, T. Miki, S. Tanemura, “Preparation of metal-doped thermochromic VO2 films for smart window coatings,” Trans. Mater. Res. Soc. Jpn. 18A, 533–536 (1994).

P. Jin, M. Tazawa, K. Yoshimura, T. Miki, K. Igarashi, S. Tanemura, “Thermochromism of meta-doped VO2 films deposited by dual-target sputtering,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, V. Wittwer, C. G. Granqvist, C. M. Lampert, eds., Proc. SPIE2255, 415–422 (1994).
[CrossRef]

Thomas, M.

M. Thomas, E. E. Chain, “Optical properties and electron energy-loss diagnostics of vanadium dioxide thin films,” Thin Solid Films 204, L1–L4 (1991).
[CrossRef]

Verleur, H. W.

H. W. Verleur, A. S. Barker, C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
[CrossRef]

Yoshimura, K.

P. Jin, M. Tazawa, K. Yoshimura, T. Miki, K. Igarashi, S. Tanemura, “Thermochromism of meta-doped VO2 films deposited by dual-target sputtering,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, V. Wittwer, C. G. Granqvist, C. M. Lampert, eds., Proc. SPIE2255, 415–422 (1994).
[CrossRef]

Appl. Opt. (2)

Jpn. J. Appl. Phys. (2)

P. Jin, S. Tanemura, “Formation and thermochromism of VO2 films deposited by RF magnetron sputtering at low substrate temperature,” Jpn. J. Appl. Phys. 33, 1478–1483 (1994).
[CrossRef]

P. Jin, S. Tanemura, “Relationship between transition temperature and x in V1-xWxO2 films deposited by dual-target magnetron sputtering,” Jpn. J. Appl. Phys. 34, 2459–2460 (1995).
[CrossRef]

Phys. Rev. (1)

H. W. Verleur, A. S. Barker, C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
[CrossRef]

Phys. Rev. B (1)

C. Tang, P. Georgopoulos, M. E. Fine, J. B. Cohen, M. Nygren, G. S. Knapp, A. Aldred, “Local atomic and electronic arrangements in WxV1-xO2,” Phys. Rev. B 31, 1000–1011 (1985).
[CrossRef]

Sov. Phys. Solid State (1)

B. S. Borisov, S. T. Koretskaya, V. G. Mokerov, A. V. Rakov, S. G. Solov’ev, “Electrical and optical properties of VO2 near the semiconductor-semimetal transition point,” Sov. Phys. Solid State 12, 1763–1769 (1971).

Thin Solid Films (2)

C. G. Granqvist, “Window coatings for the future,” Thin Solid Films 193/194, 730–741 (1990).
[CrossRef]

M. Thomas, E. E. Chain, “Optical properties and electron energy-loss diagnostics of vanadium dioxide thin films,” Thin Solid Films 204, L1–L4 (1991).
[CrossRef]

Trans. Mater. Res. Soc. Jpn. (1)

P. Jin, M. Tazawa, T. Miki, S. Tanemura, “Preparation of metal-doped thermochromic VO2 films for smart window coatings,” Trans. Mater. Res. Soc. Jpn. 18A, 533–536 (1994).

Other (2)

P. Jin, M. Tazawa, K. Yoshimura, T. Miki, K. Igarashi, S. Tanemura, “Thermochromism of meta-doped VO2 films deposited by dual-target sputtering,” in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, V. Wittwer, C. G. Granqvist, C. M. Lampert, eds., Proc. SPIE2255, 415–422 (1994).
[CrossRef]

C. G. Granqvist, “Energy-efficient windows: present and forthcoming technology,” in Materials Science for Solar Energy Conversion Systems, C. G. Granqvist, ed. (Pergamon, Oxford, UK, 1991), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measured reflectance (R) and transmittance (T) spectra for semiconductor phase of (a) VO2, (b) V0.991W0.009O2, and (c) V0.986W0.014O2 films deposited on glass substrates.

Fig. 2
Fig. 2

Measured reflectance (R) and transmittance (T) spectra for metallic phase of (a) VO2, (b) V0.991W0.009O2, and (c) V0.986W0.014O2 films deposited on glass substrates.

Fig. 3
Fig. 3

Determined optical constants (n and k) for semiconductor phase of (a) VO2, (b) V0.991W0.009O2, and (c) V0.986W0.014O2 films deposited on glass substrates.

Fig. 4
Fig. 4

Determined optical constants (n and k) for metallic phase of (a) VO2, (b) V0.991W0.009O2, and (c) V0.986W0.014O2 films deposited on glass substrates.

Tables (1)

Tables Icon

Table 1 Plasma Frequency, Collision Frequency, and Dielectric Constant at High Frequency Determined for the Metallic Phase

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε ν = ε - ν p 2 ν 2 + i ν ν c ,

Metrics