Abstract

Multi-kilo-electron-volt x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF). However, laser energies and plasma characteristics imply that x-ray microscopy will be more challenging at NIF than at existing facilities. We use analytical estimates and numerical ray tracing to investigate several instrumentation options in detail, and we conclude that near-normal-incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-ray microscopy at NIF and similar large facilities. Apertured Kirkpatrick–Baez microscopes using multilayer mirrors may also be good options, particularly for applications requiring one-dimensional imaging over narrow fields of view.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
    [CrossRef]
  2. P. Amendt, S. G. Glendinning, B. A. Hammel, R. G. Hay, L. J. Suter, “Witness foam-ball diagnostic for Nova hohlraum time-dependent drive asymmetry,” Rev. Sci. Instrum. 66, 785–787 (1995).
    [CrossRef]
  3. I. Uschman, E. Förster, H. Nishimura, K. Fujita, Y. Kato, S. Nakai, “Temperature mapping of compressed fusion pellets obtained by monochromatic imaging,” Rev. Sci. Instrum. 66, 734–736 (1995).
    [CrossRef]
  4. B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid-density material,” Phys. Fluids B 5, 2259–2264 (1993).
    [CrossRef]
  5. L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
    [CrossRef]
  6. B. A. Remington, S. G. Glendinning, R. J. Wallace, S. Rothman, R. Morales, “Wölter x-ray microscope characterization measurements on Nova,” Rev. Sci. Instrum. 63, 5080–5082 (1992).
    [CrossRef]
  7. F. J. Marshall, Q. Su, “Quantitative measurements with x-ray microscopes in laser-fusion experiments,” Rev. Sci. Instrum. 66, 725–727 (1995).
    [CrossRef]
  8. J. H. Underwood, A. C. Thompson, J. B. Kortright, K. C. Chapman, D. Lunt, “Focusing x-rays to a 1 μm spot using elastically bent, graded multi-layer coated mirrors,” Rev. Sci. Instrum. 67, 1–6 (1996).
    [CrossRef]
  9. C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997).
    [CrossRef]
  10. M. Dirksmöller, O. Rancu, I. Uschman, P. Renaudin, C. Chenais-Popovics, J. C. Gauthier, E. Förster, “Time resolved x-ray monochromatic imaging of a laser-produced plasma at 0.6635 nm wavelength,” Opt. Commun. 118, 379–387 (1995).
    [CrossRef]
  11. E. Förster, P. Gibbon, M. Dirksmöller, “Two-bent-crystal schemes for x-ray imaging of ultra-dense plasmas,” Exp. Tech. Phys. 42, 19–24 (1996).
  12. H. Wölter, “Mirror systems with grazing incidence as image-forming optics for x-rays,” Ann. Phys. (Paris) 10, 94–114 (1952); available in English as Lawrence Livermore National Laboratory Report UCRL-TRANS-10971 (Lawrence Livermore National Laboratory, Livermore, Calif., 1975).
  13. R. Kodama, N. Ikeda, Y. Kato, Y. Katori, T. Iwai, K. Takeshi, “Development of an advanced Kirkpatrick–Baez microscope,” Opt. Lett. 21, 1321–1323 (1996).
    [CrossRef] [PubMed]
  14. M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, New York, 1964).
  15. T. Harada, T. Kita, “Mechanically ruled aberration-corrected concave gratings,” Appl. Opt. 19, 3987–3993 (1980).
    [CrossRef] [PubMed]
  16. S. A. Pikuz, T. A. Shelkovenko, V. M. Romanova, D. A. Hammer, A. Ya. Faenov, V. A. Dyakin, T. A. Pikuz, “High-luminosity monochromatic x-ray backlighting using an incoherent plasma source to study extremely dense plasmas,” Rev. Sci. Instrum. 68, 740–744 (1997).
    [CrossRef]
  17. E. Förster, K. Gäbel, I. Uschmann, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Particle Beams 9, 135–148 (1991).
    [CrossRef]
  18. The Kα from a hot laser-produced plasma generally consists of many individual components from different ionization stages; see, for example, B. Yaakobi, F. J. Marshall, D. K. Bradley, J. A. Delettrez, R. S. Craxton, R. Epstein , “Signatures of target performance and mixing in titanium-doped target implosions on Omega,” Phys. Plasmas 4, 3021–3030 (1977).
  19. The predicted Mn Heα line width (3PJ = 1* - 1SJ = 0 component) is based on an electron temperature of 1 keV and an electron density of 1022 cm-3.
  20. J. F. Seely, M. P. Kowalski, W. R. Hunter, G. Gutman, “Reflectance of a wideband multilayer x-ray mirror at normal and grazing incidences,” Appl. Opt. 35, 4408–4412 (1996).
    [CrossRef] [PubMed]
  21. H. T. Yamada, B. L. Henke, J. C. Davis, “The high energy x-ray response of some useful crystal analyzers,” Lawrence Berkeley Laboratory Report LBL-22800 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1986).
  22. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
    [CrossRef]
  23. N. G. Alexandropolous, G. C. Cohen, “Crystals for stellar spectrometers,” Appl. Spectrosc. 28, 155–164 (1974).
    [CrossRef]
  24. J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).
  25. R. L. Kelly, “Atomic and ionic spectrum lines below 2000 Å; hydrogen through krypton,” J. Phys. Chem. Ref. Data 16, Suppl. 1 (1987).
  26. J. B. Kortright, “Characteristic x-ray energies,” in X-ray Data Booklet (Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, Calif., 1986).
  27. J. H. Underwood, “Crystal and multi-layer dispersive elements,” in X-ray Data Booklet (Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, Calif., 1986).

1997 (3)

L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
[CrossRef]

C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997).
[CrossRef]

S. A. Pikuz, T. A. Shelkovenko, V. M. Romanova, D. A. Hammer, A. Ya. Faenov, V. A. Dyakin, T. A. Pikuz, “High-luminosity monochromatic x-ray backlighting using an incoherent plasma source to study extremely dense plasmas,” Rev. Sci. Instrum. 68, 740–744 (1997).
[CrossRef]

1996 (4)

E. Förster, P. Gibbon, M. Dirksmöller, “Two-bent-crystal schemes for x-ray imaging of ultra-dense plasmas,” Exp. Tech. Phys. 42, 19–24 (1996).

J. H. Underwood, A. C. Thompson, J. B. Kortright, K. C. Chapman, D. Lunt, “Focusing x-rays to a 1 μm spot using elastically bent, graded multi-layer coated mirrors,” Rev. Sci. Instrum. 67, 1–6 (1996).
[CrossRef]

R. Kodama, N. Ikeda, Y. Kato, Y. Katori, T. Iwai, K. Takeshi, “Development of an advanced Kirkpatrick–Baez microscope,” Opt. Lett. 21, 1321–1323 (1996).
[CrossRef] [PubMed]

J. F. Seely, M. P. Kowalski, W. R. Hunter, G. Gutman, “Reflectance of a wideband multilayer x-ray mirror at normal and grazing incidences,” Appl. Opt. 35, 4408–4412 (1996).
[CrossRef] [PubMed]

1995 (5)

F. J. Marshall, Q. Su, “Quantitative measurements with x-ray microscopes in laser-fusion experiments,” Rev. Sci. Instrum. 66, 725–727 (1995).
[CrossRef]

J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
[CrossRef]

P. Amendt, S. G. Glendinning, B. A. Hammel, R. G. Hay, L. J. Suter, “Witness foam-ball diagnostic for Nova hohlraum time-dependent drive asymmetry,” Rev. Sci. Instrum. 66, 785–787 (1995).
[CrossRef]

I. Uschman, E. Förster, H. Nishimura, K. Fujita, Y. Kato, S. Nakai, “Temperature mapping of compressed fusion pellets obtained by monochromatic imaging,” Rev. Sci. Instrum. 66, 734–736 (1995).
[CrossRef]

M. Dirksmöller, O. Rancu, I. Uschman, P. Renaudin, C. Chenais-Popovics, J. C. Gauthier, E. Förster, “Time resolved x-ray monochromatic imaging of a laser-produced plasma at 0.6635 nm wavelength,” Opt. Commun. 118, 379–387 (1995).
[CrossRef]

1994 (1)

J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).

1993 (2)

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid-density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[CrossRef]

1992 (1)

B. A. Remington, S. G. Glendinning, R. J. Wallace, S. Rothman, R. Morales, “Wölter x-ray microscope characterization measurements on Nova,” Rev. Sci. Instrum. 63, 5080–5082 (1992).
[CrossRef]

1991 (1)

E. Förster, K. Gäbel, I. Uschmann, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Particle Beams 9, 135–148 (1991).
[CrossRef]

1987 (1)

R. L. Kelly, “Atomic and ionic spectrum lines below 2000 Å; hydrogen through krypton,” J. Phys. Chem. Ref. Data 16, Suppl. 1 (1987).

1980 (1)

1977 (1)

The Kα from a hot laser-produced plasma generally consists of many individual components from different ionization stages; see, for example, B. Yaakobi, F. J. Marshall, D. K. Bradley, J. A. Delettrez, R. S. Craxton, R. Epstein , “Signatures of target performance and mixing in titanium-doped target implosions on Omega,” Phys. Plasmas 4, 3021–3030 (1977).

1974 (1)

1952 (1)

H. Wölter, “Mirror systems with grazing incidence as image-forming optics for x-rays,” Ann. Phys. (Paris) 10, 94–114 (1952); available in English as Lawrence Livermore National Laboratory Report UCRL-TRANS-10971 (Lawrence Livermore National Laboratory, Livermore, Calif., 1975).

Aglitskiy, Y.

C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997).
[CrossRef]

Alexandropolous, N. G.

Amendt, P.

P. Amendt, S. G. Glendinning, B. A. Hammel, R. G. Hay, L. J. Suter, “Witness foam-ball diagnostic for Nova hohlraum time-dependent drive asymmetry,” Rev. Sci. Instrum. 66, 785–787 (1995).
[CrossRef]

Barbee, T. W.

L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
[CrossRef]

Bodner, S.

C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, New York, 1964).

Bourgade, J. L.

J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).

Bradley, D. K.

The Kα from a hot laser-produced plasma generally consists of many individual components from different ionization stages; see, for example, B. Yaakobi, F. J. Marshall, D. K. Bradley, J. A. Delettrez, R. S. Craxton, R. Epstein , “Signatures of target performance and mixing in titanium-doped target implosions on Omega,” Phys. Plasmas 4, 3021–3030 (1977).

Brown, C.

C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997).
[CrossRef]

Budil, K. S.

L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
[CrossRef]

Cabourdin, O.

J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).

Cauble, R.

L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
[CrossRef]

Celliers, P.

L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
[CrossRef]

Chapman, K. C.

J. H. Underwood, A. C. Thompson, J. B. Kortright, K. C. Chapman, D. Lunt, “Focusing x-rays to a 1 μm spot using elastically bent, graded multi-layer coated mirrors,” Rev. Sci. Instrum. 67, 1–6 (1996).
[CrossRef]

Chenais-Popovics, C.

M. Dirksmöller, O. Rancu, I. Uschman, P. Renaudin, C. Chenais-Popovics, J. C. Gauthier, E. Förster, “Time resolved x-ray monochromatic imaging of a laser-produced plasma at 0.6635 nm wavelength,” Opt. Commun. 118, 379–387 (1995).
[CrossRef]

Chiu, G.

L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
[CrossRef]

Cohen, G. C.

Collins, G. W.

L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
[CrossRef]

Craxton, R. S.

The Kα from a hot laser-produced plasma generally consists of many individual components from different ionization stages; see, for example, B. Yaakobi, F. J. Marshall, D. K. Bradley, J. A. Delettrez, R. S. Craxton, R. Epstein , “Signatures of target performance and mixing in titanium-doped target implosions on Omega,” Phys. Plasmas 4, 3021–3030 (1977).

Da Silva, L. B.

L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
[CrossRef]

Davis, J. C.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[CrossRef]

H. T. Yamada, B. L. Henke, J. C. Davis, “The high energy x-ray response of some useful crystal analyzers,” Lawrence Berkeley Laboratory Report LBL-22800 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1986).

Delage, O.

J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).

Delettrez, J. A.

The Kα from a hot laser-produced plasma generally consists of many individual components from different ionization stages; see, for example, B. Yaakobi, F. J. Marshall, D. K. Bradley, J. A. Delettrez, R. S. Craxton, R. Epstein , “Signatures of target performance and mixing in titanium-doped target implosions on Omega,” Phys. Plasmas 4, 3021–3030 (1977).

Dirksmöller, M.

E. Förster, P. Gibbon, M. Dirksmöller, “Two-bent-crystal schemes for x-ray imaging of ultra-dense plasmas,” Exp. Tech. Phys. 42, 19–24 (1996).

M. Dirksmöller, O. Rancu, I. Uschman, P. Renaudin, C. Chenais-Popovics, J. C. Gauthier, E. Förster, “Time resolved x-ray monochromatic imaging of a laser-produced plasma at 0.6635 nm wavelength,” Opt. Commun. 118, 379–387 (1995).
[CrossRef]

Dyakin, V. A.

S. A. Pikuz, T. A. Shelkovenko, V. M. Romanova, D. A. Hammer, A. Ya. Faenov, V. A. Dyakin, T. A. Pikuz, “High-luminosity monochromatic x-ray backlighting using an incoherent plasma source to study extremely dense plasmas,” Rev. Sci. Instrum. 68, 740–744 (1997).
[CrossRef]

Epstein, R.

The Kα from a hot laser-produced plasma generally consists of many individual components from different ionization stages; see, for example, B. Yaakobi, F. J. Marshall, D. K. Bradley, J. A. Delettrez, R. S. Craxton, R. Epstein , “Signatures of target performance and mixing in titanium-doped target implosions on Omega,” Phys. Plasmas 4, 3021–3030 (1977).

Faenov, A. Ya.

S. A. Pikuz, T. A. Shelkovenko, V. M. Romanova, D. A. Hammer, A. Ya. Faenov, V. A. Dyakin, T. A. Pikuz, “High-luminosity monochromatic x-ray backlighting using an incoherent plasma source to study extremely dense plasmas,” Rev. Sci. Instrum. 68, 740–744 (1997).
[CrossRef]

Feldman, U.

C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997).
[CrossRef]

Förster, E.

E. Förster, P. Gibbon, M. Dirksmöller, “Two-bent-crystal schemes for x-ray imaging of ultra-dense plasmas,” Exp. Tech. Phys. 42, 19–24 (1996).

M. Dirksmöller, O. Rancu, I. Uschman, P. Renaudin, C. Chenais-Popovics, J. C. Gauthier, E. Förster, “Time resolved x-ray monochromatic imaging of a laser-produced plasma at 0.6635 nm wavelength,” Opt. Commun. 118, 379–387 (1995).
[CrossRef]

I. Uschman, E. Förster, H. Nishimura, K. Fujita, Y. Kato, S. Nakai, “Temperature mapping of compressed fusion pellets obtained by monochromatic imaging,” Rev. Sci. Instrum. 66, 734–736 (1995).
[CrossRef]

E. Förster, K. Gäbel, I. Uschmann, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Particle Beams 9, 135–148 (1991).
[CrossRef]

Fujita, K.

I. Uschman, E. Förster, H. Nishimura, K. Fujita, Y. Kato, S. Nakai, “Temperature mapping of compressed fusion pellets obtained by monochromatic imaging,” Rev. Sci. Instrum. 66, 734–736 (1995).
[CrossRef]

Gäbel, K.

E. Förster, K. Gäbel, I. Uschmann, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Particle Beams 9, 135–148 (1991).
[CrossRef]

Gauthier, J. C.

M. Dirksmöller, O. Rancu, I. Uschman, P. Renaudin, C. Chenais-Popovics, J. C. Gauthier, E. Förster, “Time resolved x-ray monochromatic imaging of a laser-produced plasma at 0.6635 nm wavelength,” Opt. Commun. 118, 379–387 (1995).
[CrossRef]

Gerber, K.

C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997).
[CrossRef]

Gibbon, P.

E. Förster, P. Gibbon, M. Dirksmöller, “Two-bent-crystal schemes for x-ray imaging of ultra-dense plasmas,” Exp. Tech. Phys. 42, 19–24 (1996).

Gilles, D.

J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).

Glendinning, S. G.

P. Amendt, S. G. Glendinning, B. A. Hammel, R. G. Hay, L. J. Suter, “Witness foam-ball diagnostic for Nova hohlraum time-dependent drive asymmetry,” Rev. Sci. Instrum. 66, 785–787 (1995).
[CrossRef]

B. A. Remington, S. G. Glendinning, R. J. Wallace, S. Rothman, R. Morales, “Wölter x-ray microscope characterization measurements on Nova,” Rev. Sci. Instrum. 63, 5080–5082 (1992).
[CrossRef]

Griswold, D.

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid-density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Guilpart, B.

J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[CrossRef]

Gutman, G.

Hammel, B. A.

L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
[CrossRef]

P. Amendt, S. G. Glendinning, B. A. Hammel, R. G. Hay, L. J. Suter, “Witness foam-ball diagnostic for Nova hohlraum time-dependent drive asymmetry,” Rev. Sci. Instrum. 66, 785–787 (1995).
[CrossRef]

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid-density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Hammer, D. A.

S. A. Pikuz, T. A. Shelkovenko, V. M. Romanova, D. A. Hammer, A. Ya. Faenov, V. A. Dyakin, T. A. Pikuz, “High-luminosity monochromatic x-ray backlighting using an incoherent plasma source to study extremely dense plasmas,” Rev. Sci. Instrum. 68, 740–744 (1997).
[CrossRef]

Harada, T.

Hay, R. G.

P. Amendt, S. G. Glendinning, B. A. Hammel, R. G. Hay, L. J. Suter, “Witness foam-ball diagnostic for Nova hohlraum time-dependent drive asymmetry,” Rev. Sci. Instrum. 66, 785–787 (1995).
[CrossRef]

Henke, B. L.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[CrossRef]

H. T. Yamada, B. L. Henke, J. C. Davis, “The high energy x-ray response of some useful crystal analyzers,” Lawrence Berkeley Laboratory Report LBL-22800 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1986).

Holland, G.

C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997).
[CrossRef]

Holmes, N. C.

L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
[CrossRef]

Hunter, W. R.

Ikeda, N.

Iwai, T.

Juraszek, D.

J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).

Kato, Y.

R. Kodama, N. Ikeda, Y. Kato, Y. Katori, T. Iwai, K. Takeshi, “Development of an advanced Kirkpatrick–Baez microscope,” Opt. Lett. 21, 1321–1323 (1996).
[CrossRef] [PubMed]

I. Uschman, E. Förster, H. Nishimura, K. Fujita, Y. Kato, S. Nakai, “Temperature mapping of compressed fusion pellets obtained by monochromatic imaging,” Rev. Sci. Instrum. 66, 734–736 (1995).
[CrossRef]

Katori, Y.

Kelly, R. L.

R. L. Kelly, “Atomic and ionic spectrum lines below 2000 Å; hydrogen through krypton,” J. Phys. Chem. Ref. Data 16, Suppl. 1 (1987).

Kilkenny, J. D.

L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
[CrossRef]

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid-density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Kita, T.

Kodama, R.

Kortright, J. B.

J. H. Underwood, A. C. Thompson, J. B. Kortright, K. C. Chapman, D. Lunt, “Focusing x-rays to a 1 μm spot using elastically bent, graded multi-layer coated mirrors,” Rev. Sci. Instrum. 67, 1–6 (1996).
[CrossRef]

J. B. Kortright, “Characteristic x-ray energies,” in X-ray Data Booklet (Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, Calif., 1986).

Kowalski, M. P.

Landen, O. L.

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid-density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Lehecka, T.

C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997).
[CrossRef]

Lindl, J.

J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
[CrossRef]

Lunt, D.

J. H. Underwood, A. C. Thompson, J. B. Kortright, K. C. Chapman, D. Lunt, “Focusing x-rays to a 1 μm spot using elastically bent, graded multi-layer coated mirrors,” Rev. Sci. Instrum. 67, 1–6 (1996).
[CrossRef]

Marmoret, R.

J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).

Marshall, F. J.

F. J. Marshall, Q. Su, “Quantitative measurements with x-ray microscopes in laser-fusion experiments,” Rev. Sci. Instrum. 66, 725–727 (1995).
[CrossRef]

The Kα from a hot laser-produced plasma generally consists of many individual components from different ionization stages; see, for example, B. Yaakobi, F. J. Marshall, D. K. Bradley, J. A. Delettrez, R. S. Craxton, R. Epstein , “Signatures of target performance and mixing in titanium-doped target implosions on Omega,” Phys. Plasmas 4, 3021–3030 (1977).

Miller, P. L.

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid-density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Miquel, J. L.

J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).

Morales, R.

B. A. Remington, S. G. Glendinning, R. J. Wallace, S. Rothman, R. Morales, “Wölter x-ray microscope characterization measurements on Nova,” Rev. Sci. Instrum. 63, 5080–5082 (1992).
[CrossRef]

Nakai, S.

I. Uschman, E. Förster, H. Nishimura, K. Fujita, Y. Kato, S. Nakai, “Temperature mapping of compressed fusion pellets obtained by monochromatic imaging,” Rev. Sci. Instrum. 66, 734–736 (1995).
[CrossRef]

Ng, A.

L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
[CrossRef]

Nishimura, H.

I. Uschman, E. Förster, H. Nishimura, K. Fujita, Y. Kato, S. Nakai, “Temperature mapping of compressed fusion pellets obtained by monochromatic imaging,” Rev. Sci. Instrum. 66, 734–736 (1995).
[CrossRef]

Obenschain, S.

C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997).
[CrossRef]

Pawley, C.

C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997).
[CrossRef]

Perry, T. S.

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid-density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Peyrusse, O.

J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).

Peyser, T. A.

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid-density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Pikuz, S. A.

S. A. Pikuz, T. A. Shelkovenko, V. M. Romanova, D. A. Hammer, A. Ya. Faenov, V. A. Dyakin, T. A. Pikuz, “High-luminosity monochromatic x-ray backlighting using an incoherent plasma source to study extremely dense plasmas,” Rev. Sci. Instrum. 68, 740–744 (1997).
[CrossRef]

Pikuz, T. A.

S. A. Pikuz, T. A. Shelkovenko, V. M. Romanova, D. A. Hammer, A. Ya. Faenov, V. A. Dyakin, T. A. Pikuz, “High-luminosity monochromatic x-ray backlighting using an incoherent plasma source to study extremely dense plasmas,” Rev. Sci. Instrum. 68, 740–744 (1997).
[CrossRef]

Rancu, O.

M. Dirksmöller, O. Rancu, I. Uschman, P. Renaudin, C. Chenais-Popovics, J. C. Gauthier, E. Förster, “Time resolved x-ray monochromatic imaging of a laser-produced plasma at 0.6635 nm wavelength,” Opt. Commun. 118, 379–387 (1995).
[CrossRef]

Remington, B. A.

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid-density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

B. A. Remington, S. G. Glendinning, R. J. Wallace, S. Rothman, R. Morales, “Wölter x-ray microscope characterization measurements on Nova,” Rev. Sci. Instrum. 63, 5080–5082 (1992).
[CrossRef]

Renaudin, P.

M. Dirksmöller, O. Rancu, I. Uschman, P. Renaudin, C. Chenais-Popovics, J. C. Gauthier, E. Förster, “Time resolved x-ray monochromatic imaging of a laser-produced plasma at 0.6635 nm wavelength,” Opt. Commun. 118, 379–387 (1995).
[CrossRef]

Reverdin, C.

J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).

Romanova, V. M.

S. A. Pikuz, T. A. Shelkovenko, V. M. Romanova, D. A. Hammer, A. Ya. Faenov, V. A. Dyakin, T. A. Pikuz, “High-luminosity monochromatic x-ray backlighting using an incoherent plasma source to study extremely dense plasmas,” Rev. Sci. Instrum. 68, 740–744 (1997).
[CrossRef]

Ross, M.

L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
[CrossRef]

Rothman, S.

B. A. Remington, S. G. Glendinning, R. J. Wallace, S. Rothman, R. Morales, “Wölter x-ray microscope characterization measurements on Nova,” Rev. Sci. Instrum. 63, 5080–5082 (1992).
[CrossRef]

Rouyer, A.

J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).

Sauneuf, R.

J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).

Schirmann, D.

J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).

Seely, J.

C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997).
[CrossRef]

Seely, J. F.

Serlin, V.

C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997).
[CrossRef]

Sethian, J.

C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997).
[CrossRef]

Shelkovenko, T. A.

S. A. Pikuz, T. A. Shelkovenko, V. M. Romanova, D. A. Hammer, A. Ya. Faenov, V. A. Dyakin, T. A. Pikuz, “High-luminosity monochromatic x-ray backlighting using an incoherent plasma source to study extremely dense plasmas,” Rev. Sci. Instrum. 68, 740–744 (1997).
[CrossRef]

Su, Q.

F. J. Marshall, Q. Su, “Quantitative measurements with x-ray microscopes in laser-fusion experiments,” Rev. Sci. Instrum. 66, 725–727 (1995).
[CrossRef]

Suter, L. J.

P. Amendt, S. G. Glendinning, B. A. Hammel, R. G. Hay, L. J. Suter, “Witness foam-ball diagnostic for Nova hohlraum time-dependent drive asymmetry,” Rev. Sci. Instrum. 66, 785–787 (1995).
[CrossRef]

Takeshi, K.

Thompson, A. C.

J. H. Underwood, A. C. Thompson, J. B. Kortright, K. C. Chapman, D. Lunt, “Focusing x-rays to a 1 μm spot using elastically bent, graded multi-layer coated mirrors,” Rev. Sci. Instrum. 67, 1–6 (1996).
[CrossRef]

Underwood, J. H.

J. H. Underwood, A. C. Thompson, J. B. Kortright, K. C. Chapman, D. Lunt, “Focusing x-rays to a 1 μm spot using elastically bent, graded multi-layer coated mirrors,” Rev. Sci. Instrum. 67, 1–6 (1996).
[CrossRef]

J. H. Underwood, “Crystal and multi-layer dispersive elements,” in X-ray Data Booklet (Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, Calif., 1986).

Uschman, I.

M. Dirksmöller, O. Rancu, I. Uschman, P. Renaudin, C. Chenais-Popovics, J. C. Gauthier, E. Förster, “Time resolved x-ray monochromatic imaging of a laser-produced plasma at 0.6635 nm wavelength,” Opt. Commun. 118, 379–387 (1995).
[CrossRef]

I. Uschman, E. Förster, H. Nishimura, K. Fujita, Y. Kato, S. Nakai, “Temperature mapping of compressed fusion pellets obtained by monochromatic imaging,” Rev. Sci. Instrum. 66, 734–736 (1995).
[CrossRef]

Uschmann, I.

E. Förster, K. Gäbel, I. Uschmann, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Particle Beams 9, 135–148 (1991).
[CrossRef]

Wallace, R. J.

L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
[CrossRef]

B. A. Remington, S. G. Glendinning, R. J. Wallace, S. Rothman, R. Morales, “Wölter x-ray microscope characterization measurements on Nova,” Rev. Sci. Instrum. 63, 5080–5082 (1992).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, New York, 1964).

Wölter, H.

H. Wölter, “Mirror systems with grazing incidence as image-forming optics for x-rays,” Ann. Phys. (Paris) 10, 94–114 (1952); available in English as Lawrence Livermore National Laboratory Report UCRL-TRANS-10971 (Lawrence Livermore National Laboratory, Livermore, Calif., 1975).

Yaakobi, B.

The Kα from a hot laser-produced plasma generally consists of many individual components from different ionization stages; see, for example, B. Yaakobi, F. J. Marshall, D. K. Bradley, J. A. Delettrez, R. S. Craxton, R. Epstein , “Signatures of target performance and mixing in titanium-doped target implosions on Omega,” Phys. Plasmas 4, 3021–3030 (1977).

Yamada, H. T.

H. T. Yamada, B. L. Henke, J. C. Davis, “The high energy x-ray response of some useful crystal analyzers,” Lawrence Berkeley Laboratory Report LBL-22800 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1986).

Ann. Phys. (Paris) (1)

H. Wölter, “Mirror systems with grazing incidence as image-forming optics for x-rays,” Ann. Phys. (Paris) 10, 94–114 (1952); available in English as Lawrence Livermore National Laboratory Report UCRL-TRANS-10971 (Lawrence Livermore National Laboratory, Livermore, Calif., 1975).

Appl. Opt. (2)

Appl. Spectrosc. (1)

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions,” At. Data Nucl. Data Tables 54(2), 181–342 (1993).
[CrossRef]

Exp. Tech. Phys. (1)

E. Förster, P. Gibbon, M. Dirksmöller, “Two-bent-crystal schemes for x-ray imaging of ultra-dense plasmas,” Exp. Tech. Phys. 42, 19–24 (1996).

J. Phys. Chem. Ref. Data (1)

R. L. Kelly, “Atomic and ionic spectrum lines below 2000 Å; hydrogen through krypton,” J. Phys. Chem. Ref. Data 16, Suppl. 1 (1987).

Laser Particle Beams (1)

E. Förster, K. Gäbel, I. Uschmann, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Particle Beams 9, 135–148 (1991).
[CrossRef]

Opt. Commun. (1)

M. Dirksmöller, O. Rancu, I. Uschman, P. Renaudin, C. Chenais-Popovics, J. C. Gauthier, E. Förster, “Time resolved x-ray monochromatic imaging of a laser-produced plasma at 0.6635 nm wavelength,” Opt. Commun. 118, 379–387 (1995).
[CrossRef]

Opt. Lett. (1)

Phys. Fluids B (1)

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid-density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Phys. Plasmas (2)

J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
[CrossRef]

The Kα from a hot laser-produced plasma generally consists of many individual components from different ionization stages; see, for example, B. Yaakobi, F. J. Marshall, D. K. Bradley, J. A. Delettrez, R. S. Craxton, R. Epstein , “Signatures of target performance and mixing in titanium-doped target implosions on Omega,” Phys. Plasmas 4, 3021–3030 (1977).

Phys. Rev. Lett. (1)

L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997).
[CrossRef]

Plasma Phys. Rep. (1)

J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).

Rev. Sci. Instrum. (7)

S. A. Pikuz, T. A. Shelkovenko, V. M. Romanova, D. A. Hammer, A. Ya. Faenov, V. A. Dyakin, T. A. Pikuz, “High-luminosity monochromatic x-ray backlighting using an incoherent plasma source to study extremely dense plasmas,” Rev. Sci. Instrum. 68, 740–744 (1997).
[CrossRef]

B. A. Remington, S. G. Glendinning, R. J. Wallace, S. Rothman, R. Morales, “Wölter x-ray microscope characterization measurements on Nova,” Rev. Sci. Instrum. 63, 5080–5082 (1992).
[CrossRef]

F. J. Marshall, Q. Su, “Quantitative measurements with x-ray microscopes in laser-fusion experiments,” Rev. Sci. Instrum. 66, 725–727 (1995).
[CrossRef]

J. H. Underwood, A. C. Thompson, J. B. Kortright, K. C. Chapman, D. Lunt, “Focusing x-rays to a 1 μm spot using elastically bent, graded multi-layer coated mirrors,” Rev. Sci. Instrum. 67, 1–6 (1996).
[CrossRef]

C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997).
[CrossRef]

P. Amendt, S. G. Glendinning, B. A. Hammel, R. G. Hay, L. J. Suter, “Witness foam-ball diagnostic for Nova hohlraum time-dependent drive asymmetry,” Rev. Sci. Instrum. 66, 785–787 (1995).
[CrossRef]

I. Uschman, E. Förster, H. Nishimura, K. Fujita, Y. Kato, S. Nakai, “Temperature mapping of compressed fusion pellets obtained by monochromatic imaging,” Rev. Sci. Instrum. 66, 734–736 (1995).
[CrossRef]

Other (5)

The predicted Mn Heα line width (3PJ = 1* - 1SJ = 0 component) is based on an electron temperature of 1 keV and an electron density of 1022 cm-3.

M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, New York, 1964).

H. T. Yamada, B. L. Henke, J. C. Davis, “The high energy x-ray response of some useful crystal analyzers,” Lawrence Berkeley Laboratory Report LBL-22800 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1986).

J. B. Kortright, “Characteristic x-ray energies,” in X-ray Data Booklet (Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, Calif., 1986).

J. H. Underwood, “Crystal and multi-layer dispersive elements,” in X-ray Data Booklet (Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Aberration and diffraction limits to collection solid angles as a function of incident angle for 2-D imaging systems, assuming a source distance of 200 mm, a magnification of 4, a wavelength of 0.2 nm, and requiring a source resolution of 10 μm or more over a 2-mm FOV. Regions I–V correspond to the metal-mirror KB regime, the multilayer mirror KB regime, the bent-crystal KB regime, the spherical crystal regime, and the toroidal crystal regime, respectively.

Fig. 2
Fig. 2

Aberration and diffraction limits to collection solid angles as a function of incident angle for 1-D imaging systems, assuming a source distance of 200 mm, a magnification of 40, a wavelength of 0.2 nm, and requiring a source resolution of 3 μm or more over a 0.3-mm FOV while spatially integrating over a 0.3-mm width in the other dimension. The collection mirror for KB systems is assumed to operate at unit magnification.

Fig. 3
Fig. 3

Estimated image brightness for several choices of 2-D imaging microscope configurations and mirror materials determined with parameters of Fig. 1 and assuming the Mn Kα line is used for imaging.

Fig. 4
Fig. 4

Estimated image brightness for several choices of 2-D imaging microscope configurations and mirror materials determined with the parameters of Fig. 1 and assuming the Mn Heα line is used for imaging.

Fig. 5
Fig. 5

Estimated image brightness for several choices of 1-D imaging microscope configurations and mirror materials determined with the parameters of Fig. 2 and assuming the Mn Kα line is used for imaging.

Fig. 6
Fig. 6

Estimated image brightness for several choices of 1-D imaging microscope configurations and mirror materials determined with the parameters of Fig. 2 and assuming the Mn Heα line is used for imaging.

Fig. 7
Fig. 7

Sketch showing how an aperture, placed behind a mirror on the Rowland circle, can be used to minimize chromatic vignetting of the FOV with Bragg reflector mirrors.

Tables (2)

Tables Icon

Table 1 Collected Analytical Results

Tables Icon

Table 2 Promising Emission Line and Crystal Plane Coincidences

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

e 0 I 0 = Ω η M v M h ,
σ 2 M + 1 M   D 2 + 2.44 λ p D 2 .
Ω π σ 2 M 2 8 p 2 M + 1 2 1 + 1 - 4.88 λ p M + 1 M σ 2 2 1 / 2 .
p max = M σ 2 4.88 λ M + 1 .
Ω σ Σ M 2 2   p 2 M + 1 2 1 + 1 - 4 λ p M + 1 M σ 2 2 1 / 2 1 / 2 .
F = 2 pD s .
S m = q sin   θ 2 lC 20 + 3 l 2 C 30 + w 2 C 12 ,
S s = q 2 wC 02 + 2 wlC 12 ,
C 20 = sin   θ 2 M + 1 sin   θ Mp - 2 R ,
C 02 = 1 2 M + 1 Mp - 2   sin   θ R ,
C 30 = sin   θ   cos   θ 2 p M 2 - 1 sin   θ M 2 p - M - 1 MR ,
C 12 = cos   θ 2 p M 2 - 1 M 2 p - M - 1 sin   θ MR ,
L = 2 Mp σ F M + 1 cos   θ .
L = 16 M 2 p σ 3 M 2 - 1 sin   θ   cos   θ 1 / 2 ,
L = M σ M + 1 1 - sin   θ ,
Ω > 4 λ 2 σ 2 .
W M Σ M + 1 cos 2   θ ,
L = 16 M 2 p σ   tan   θ - W 2 M 2 - 1 1 + cos 2   θ 3 M 2 - 1 sin 2   θ 1 / 2 ,
W = 8 M 2 p σ   tan   θ M 2 - 1 1 + cos 2   θ 1 / 2 ,
L = 8 M 2 p σ 3 M 2 - 1 sin   θ   cos   θ 1 / 2 .
η = R p WL - d λ   - W / 2 W / 2 d x   - L / 2 L / 2 d yf λ - λ 0 Δ λ line × g λ - λ x , y Δ λ Bragg ,
η BR p Δ λ / λ = R int Δ λ / λ tan   θ .
η = pR int 1 - p R   sin   θ L   sin   θ ,   R int Δ λ / λ tan   θ ,
η = R p 2 L 2 - d λ   - L / 2 L / 2 d xf λ - λ 0 Δ λ line g λ - λ x Δ λ Bragg 2 .
η = 2 MR int M - 1 2 / Ω ,   R int Δ λ / λ tan   θ 2 ,
η = 2 MR int M - 1 2 / Ω ,   R p 2 .
η = 2 MpR int 2 cos   θ M - 1 L Δ λ / λ sin 2   θ ,   R int Δ λ / λ tan   θ 2 .
η 2 MpR p R int M - 1 L   sin   θ ,   R p 2 .
F max 2 p   tan   θ Δ λ λ 2 + B 2 1 / 2 .

Metrics