Abstract

The ability of ultraviolet resonance Raman spectroscopy (UVRRS) to determine structural, environmental, and analytical information concerning low-concentration aqueous biomolecules makes it a powerful bioanalytical and biophysical technique. Unfortunately, its utility has been limited by experimental requirements that preclude in situ or in vivo studies in most cases. We have developed the first high-performance fiber-optic probes suitable for long-term use in pulsed UVRRS applications in the deep- UV (DUV, 205–250 nm). The probes incorporate recently developed improved ultraviolet (IUV) fibers that do not exhibit the rapid solarization and throughput decay that previously hampered the use of optical fibers for delivering pulsed, DUV light. A novel 90° mirrored collection geometry is used to overcome the inner-filtering effects that plague flush-probe geometries. The IUV fibers are characterized with respect to their efficacy at transmitting pulsed, DUV laser light, and prototype probes are used to obtain pulsed UVRRS data of aromatic amino acids, proteins, and hormones at low concentrations with 205–240-nm pulsed excitation. Efficient probe geometries and fabrication methods are presented. The performance of the probes in examining resonance-enhanced Raman signals from absorbing chromophores is investigated, and the optimal excitation wavelength is shown to be significantly red-shifted from the maximum of the resonance Raman enhancement profile. Generally applicable procedures for determining optimal experimental conditions are also introduced.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry: Part 1,” Anal. Chem. 65, 59A–66A (1993).
  2. S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry: Part 2,” Anal. Chem. 65, 201A–210A (1993).
    [PubMed]
  3. J. C. Austin, K. R. Rodgers, T. G. Spiro, “Protein structure from ultraviolet resonance Raman spectroscopy,” in Methods in Enzymology, J. F. Riordan, B. L. Vallee, eds. (Academic, San Diego, Calif., 1993), Vol. 226, pp. 374–396.
    [CrossRef]
  4. J. C. Austin, T. Jordan, T. G. Spiro, “Ultraviolet resonance Raman studies of proteins and related model compounds,” in Biomedical Spectroscopy, Vol. 20A of Advances in Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, West Sussex, UK, 1993), pp. 55–127.
  5. T. J. Thamann, “Probing local protein structure with ultraviolet resonance Raman spectroscopy,” in Spectroscopic Methods for Determining Protein Structure in Solution, H. A. Havel, ed. (VCH, New York, 1996), pp. 96–134.
  6. S. P. A. Fodor, R. P. Rava, T. R. Hays, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985).
    [CrossRef]
  7. S. P. A. Fodor, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of DNA with 200–266 nm laser excitation,” J. Am. Chem. Soc. 108, 3198–3205 (1986).
    [CrossRef]
  8. I. Mukerji, M. C. Schiber, T. G. Spiro, J. R. Fresco, “A UV resonance Raman study of d(A+-G)10, a single-stranded helix without stacked or paired bases,” Biochemistry 34, 14300–14303 (1995).
    [CrossRef] [PubMed]
  9. S. A. Asher, M. Ludwig, C. R. Johnson, “UV resonance Raman excitation profiles of the aromatic amino acids,” J. Am. Chem. Soc. 108, 3186–3197 (1986).
    [CrossRef]
  10. C. R. Johnson, M. Ludwig, S. O’Donnell, S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106, 5008–5010 (1984).
    [CrossRef]
  11. R. P. Rava, T. G. Spiro, “Resonance enhancement in the ultraviolet Raman spectra of aromatic amino acids,” J. Phys. Chem. 89, 1856–1861 (1985).
    [CrossRef]
  12. H Georg Schulze, “The development of a fiber-optic probe for the in vitro resonance Raman spectroscopy of neurotransmitters,” Ph.D. dissertation (University of British Columbia, Vancouver, British Columbia, Canada, 1996).
  13. R. A. Copeland, T. G. Spiro, “Secondary structure determination in proteins from deep (192–222 nm) ultraviolet Raman spectroscopy,” Biochemistry 26, 2134–2139 (1987).
    [CrossRef] [PubMed]
  14. S. Song, S. A. Asher, “UV resonance Raman studies of peptide conformation in poly(l-lysine), poly(l-glutamic acid), and model complexes: the basis for protein secondary structure determinations,” J. Am. Chem. Soc. 111, 4295–4305 (1989).
    [CrossRef]
  15. R. Manoharan, Y. Wang, N. Boustany, J. F. Brennan, J. J. Baraga, R. R. Dasari, J. Van Dam, S. Singer, M. S. Feld, “Raman spectroscopy for cancer detection: instrument development and tissue diagnosis,” in Biomedical Optoelectronic Devices and Systems II, N. I. Croitoru, N. Kroo, M. Miyagi, R. Pratesi, J. M. Wolfrum, eds., Proc. SPIE2328, 128–132 (1994).
    [CrossRef]
  16. R. Tuma, J. H. K. Bamford, D. H. Bamford, M. P. Russell, G. J. Thomas, “Structure, interactions, and dynamics of PRD1 virus: I. Coupling of subunit folding and capsid assembly,” J. Mol. Biol. 257, 87–101 (1996).
    [CrossRef] [PubMed]
  17. X. Zhao, D. Lu, S. Jiang, C. Mao, Y. Fan, C. An, Z. Li, “Interaction between intercalation type anticancer drugs and DNA studied by ultraviolet resonance Raman spectroscopy,” Sci. China Ser. B 38, 555–563 (1995).
  18. Y. Wang, H. E. Van Wart, “Raman and resonance Raman spectroscopy,” in Methods in Enzymology, J. F. Riordan, B. L. Vallee, eds. (Academic, San Diego, Calif., 1993), Vol. 226, pp. 319–396.
    [CrossRef]
  19. S. D. Schwab, R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
    [CrossRef]
  20. R. L. McCreery, M. Fleischmann, P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem. 55, 146–148 (1983).
    [CrossRef]
  21. L. S. Greek, H. G. Schulze, C. A. Haynes, M. W. Blades, R. F. B. Turner, “Rational design of fiber-optic probes for visible and pulsed-ultraviolet resonance Raman spectroscopy,” Appl. Opt. 35, 4086–4095 (1996).
    [CrossRef] [PubMed]
  22. P. Plaza, N. Q. Dao, M. Jouan, H. Fevrier, H. Saisse, “Simulation et optimisation des capteurs à fibres optiques adjacentes,” Appl. Opt. 25, 3448–3454 (1986).
    [CrossRef] [PubMed]
  23. Z. Y. Zhu, M. C. Yappert, “Determination of effective depth and equivalent pathlength for a single-fiber fluorometric sensor,” Appl. Spectrosc. 46, 912–918 (1992).
    [CrossRef]
  24. Z. Y. Zhu, M. C. Yappert, “Determination of effective depth for double-fiber fluorometric sensors,” Appl. Spectrosc. 46, 919–924 (1992).
    [CrossRef]
  25. S. M. Angel, M. L. Myrick, “Wavelength selection for fiber optic Raman spectroscopy. Part 1,” Appl. Opt. 9, 1350–1352 (1990).
    [CrossRef]
  26. M. L. Myrick, S. M. Angel, R. Desiderio, “Comparison of some fiber optic configurations for measurement of luminescence and Raman scattering,” Appl. Opt. 29, 1333–1344 (1990).
    [CrossRef] [PubMed]
  27. M. Jiaying, L. Zhong, “A low stray light Raman microprobe using optical fibers and GRIN lenses,” Appl. Spectrosc. 45, 1302–1304 (1991).
    [CrossRef]
  28. M. L. Myrick, S. M. Angel, “Elimination of background in fiber-optic Raman measurements,” Appl. Spectrosc. 44, 565–570 (1990).
    [CrossRef]
  29. T. F. Cooney, H. T. Skinner, S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part I: Model for liquids and transparent solids,” Appl. Spectrosc. 50, 836–848 (1996).
    [CrossRef]
  30. T. F. Cooney, H. T. Skinner, S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part II: Tests of single-fiber, lensed, and flat- and bevel-tip multi fiber probes,” Appl. Spectrosc. 50, 849–860 (1996).
    [CrossRef]
  31. P. Karlitschek, K. F. Klein, G. Hillrichs, “Suppression of solarization effects in optical fibers for 266-nm laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 620–625 (1997).
  32. R. A. Weeks, “The many varieties of E′-centers: a review,” J. Non Cryst. Solids 179, 1–9 (1994).
    [CrossRef]
  33. H. Fabian, U. Grzesik, K.-H. Wörner, K. F. Klein, “Optical fibers for UV applications,” in Glasses for Optoelectronics II, G. C. Righini, ed., Proc. SPIE1513, 168–173 (1991).
    [CrossRef]
  34. P. Karlitschek, G. Hillrichs, K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
    [CrossRef]
  35. K. F. Klein, G. Hillrichs, P. Karlitschek, K. Mann, “Possibilities and limitations for the transmission of excimer laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 564–573 (1997).
  36. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3133 (1988).
    [CrossRef] [PubMed]
  37. H. Hitzler, N. Leclerc, K. F. Klein, K. O. Greulich, J. Wolfrum, “Optical fiber transmission of excimer laser pulses,” in Excimer Lasers and Applications, D. Basting, ed., Proc. SPIE1023, 249–252 (1988).
    [CrossRef]
  38. D. H. Levy, K. K. Gleason, M. Rothschild, J. H. C. Sedlacek, “The role of hydrogen in excimer-laser-induced damage of fused silica,” J. Appl. Phys. 73, 2809–2815 (1993).
    [CrossRef]
  39. L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non Cryst. Solids 179, 51–69 (1994).
    [CrossRef]
  40. H. Hitzler, C. Pfleiderer, N. Leclerc, J. Wolfrum, K. O. Greulich, H. Fabian, “KrF-laser irradiation induced defects in all silica optical fibers,” J. Non Cryst. Solids 149, 107–114 (1994).
    [CrossRef]
  41. P. Karlitschek, K. F. Klein, G. Hillrichs, U. Grzesik, “Improved UV-fiber for 193-nm excimer laser applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 127–134 (1996).
    [CrossRef]
  42. K. F. Klein, G Hillrichs, P Karlitschek, U Grzesik, “Improved optical fibers for excimer laser applications,” presented at LASERmed 95, Munich, June 1995.
  43. R. D. McLachlan, G. L. Jewett, J. C. Evans, “Fiber optic probe for sensitive Raman analysis,” U.S. patent4,573,761 (4March1986).
  44. A. C. Albrecht, M. C. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys. 55, 4438–4443 (1971).
    [CrossRef]
  45. C. Su, Y. Wang, T. G. Spiro, “Saturation effects on ultraviolet resonance Raman intensities: excimer/YAG laser comparison and aromatic amino acid cross-sections,” J. Raman Spectrosc. 21, 435–440 (1990).
    [CrossRef]

1996 (4)

1995 (3)

X. Zhao, D. Lu, S. Jiang, C. Mao, Y. Fan, C. An, Z. Li, “Interaction between intercalation type anticancer drugs and DNA studied by ultraviolet resonance Raman spectroscopy,” Sci. China Ser. B 38, 555–563 (1995).

P. Karlitschek, G. Hillrichs, K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
[CrossRef]

I. Mukerji, M. C. Schiber, T. G. Spiro, J. R. Fresco, “A UV resonance Raman study of d(A+-G)10, a single-stranded helix without stacked or paired bases,” Biochemistry 34, 14300–14303 (1995).
[CrossRef] [PubMed]

1994 (3)

R. A. Weeks, “The many varieties of E′-centers: a review,” J. Non Cryst. Solids 179, 1–9 (1994).
[CrossRef]

L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non Cryst. Solids 179, 51–69 (1994).
[CrossRef]

H. Hitzler, C. Pfleiderer, N. Leclerc, J. Wolfrum, K. O. Greulich, H. Fabian, “KrF-laser irradiation induced defects in all silica optical fibers,” J. Non Cryst. Solids 149, 107–114 (1994).
[CrossRef]

1993 (3)

D. H. Levy, K. K. Gleason, M. Rothschild, J. H. C. Sedlacek, “The role of hydrogen in excimer-laser-induced damage of fused silica,” J. Appl. Phys. 73, 2809–2815 (1993).
[CrossRef]

S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry: Part 1,” Anal. Chem. 65, 59A–66A (1993).

S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry: Part 2,” Anal. Chem. 65, 201A–210A (1993).
[PubMed]

1992 (2)

1991 (1)

1990 (4)

M. L. Myrick, S. M. Angel, R. Desiderio, “Comparison of some fiber optic configurations for measurement of luminescence and Raman scattering,” Appl. Opt. 29, 1333–1344 (1990).
[CrossRef] [PubMed]

C. Su, Y. Wang, T. G. Spiro, “Saturation effects on ultraviolet resonance Raman intensities: excimer/YAG laser comparison and aromatic amino acid cross-sections,” J. Raman Spectrosc. 21, 435–440 (1990).
[CrossRef]

M. L. Myrick, S. M. Angel, “Elimination of background in fiber-optic Raman measurements,” Appl. Spectrosc. 44, 565–570 (1990).
[CrossRef]

S. M. Angel, M. L. Myrick, “Wavelength selection for fiber optic Raman spectroscopy. Part 1,” Appl. Opt. 9, 1350–1352 (1990).
[CrossRef]

1989 (1)

S. Song, S. A. Asher, “UV resonance Raman studies of peptide conformation in poly(l-lysine), poly(l-glutamic acid), and model complexes: the basis for protein secondary structure determinations,” J. Am. Chem. Soc. 111, 4295–4305 (1989).
[CrossRef]

1988 (1)

1987 (1)

R. A. Copeland, T. G. Spiro, “Secondary structure determination in proteins from deep (192–222 nm) ultraviolet Raman spectroscopy,” Biochemistry 26, 2134–2139 (1987).
[CrossRef] [PubMed]

1986 (3)

S. P. A. Fodor, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of DNA with 200–266 nm laser excitation,” J. Am. Chem. Soc. 108, 3198–3205 (1986).
[CrossRef]

S. A. Asher, M. Ludwig, C. R. Johnson, “UV resonance Raman excitation profiles of the aromatic amino acids,” J. Am. Chem. Soc. 108, 3186–3197 (1986).
[CrossRef]

P. Plaza, N. Q. Dao, M. Jouan, H. Fevrier, H. Saisse, “Simulation et optimisation des capteurs à fibres optiques adjacentes,” Appl. Opt. 25, 3448–3454 (1986).
[CrossRef] [PubMed]

1985 (2)

S. P. A. Fodor, R. P. Rava, T. R. Hays, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985).
[CrossRef]

R. P. Rava, T. G. Spiro, “Resonance enhancement in the ultraviolet Raman spectra of aromatic amino acids,” J. Phys. Chem. 89, 1856–1861 (1985).
[CrossRef]

1984 (2)

C. R. Johnson, M. Ludwig, S. O’Donnell, S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106, 5008–5010 (1984).
[CrossRef]

S. D. Schwab, R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

1983 (1)

R. L. McCreery, M. Fleischmann, P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem. 55, 146–148 (1983).
[CrossRef]

1971 (1)

A. C. Albrecht, M. C. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys. 55, 4438–4443 (1971).
[CrossRef]

Albrecht, A. C.

A. C. Albrecht, M. C. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys. 55, 4438–4443 (1971).
[CrossRef]

An, C.

X. Zhao, D. Lu, S. Jiang, C. Mao, Y. Fan, C. An, Z. Li, “Interaction between intercalation type anticancer drugs and DNA studied by ultraviolet resonance Raman spectroscopy,” Sci. China Ser. B 38, 555–563 (1995).

Angel, S. M.

Asher, S. A.

S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry: Part 1,” Anal. Chem. 65, 59A–66A (1993).

S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry: Part 2,” Anal. Chem. 65, 201A–210A (1993).
[PubMed]

S. Song, S. A. Asher, “UV resonance Raman studies of peptide conformation in poly(l-lysine), poly(l-glutamic acid), and model complexes: the basis for protein secondary structure determinations,” J. Am. Chem. Soc. 111, 4295–4305 (1989).
[CrossRef]

S. A. Asher, M. Ludwig, C. R. Johnson, “UV resonance Raman excitation profiles of the aromatic amino acids,” J. Am. Chem. Soc. 108, 3186–3197 (1986).
[CrossRef]

C. R. Johnson, M. Ludwig, S. O’Donnell, S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106, 5008–5010 (1984).
[CrossRef]

Austin, J. C.

J. C. Austin, T. Jordan, T. G. Spiro, “Ultraviolet resonance Raman studies of proteins and related model compounds,” in Biomedical Spectroscopy, Vol. 20A of Advances in Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, West Sussex, UK, 1993), pp. 55–127.

J. C. Austin, K. R. Rodgers, T. G. Spiro, “Protein structure from ultraviolet resonance Raman spectroscopy,” in Methods in Enzymology, J. F. Riordan, B. L. Vallee, eds. (Academic, San Diego, Calif., 1993), Vol. 226, pp. 374–396.
[CrossRef]

Bamford, D. H.

R. Tuma, J. H. K. Bamford, D. H. Bamford, M. P. Russell, G. J. Thomas, “Structure, interactions, and dynamics of PRD1 virus: I. Coupling of subunit folding and capsid assembly,” J. Mol. Biol. 257, 87–101 (1996).
[CrossRef] [PubMed]

Bamford, J. H. K.

R. Tuma, J. H. K. Bamford, D. H. Bamford, M. P. Russell, G. J. Thomas, “Structure, interactions, and dynamics of PRD1 virus: I. Coupling of subunit folding and capsid assembly,” J. Mol. Biol. 257, 87–101 (1996).
[CrossRef] [PubMed]

Baraga, J. J.

R. Manoharan, Y. Wang, N. Boustany, J. F. Brennan, J. J. Baraga, R. R. Dasari, J. Van Dam, S. Singer, M. S. Feld, “Raman spectroscopy for cancer detection: instrument development and tissue diagnosis,” in Biomedical Optoelectronic Devices and Systems II, N. I. Croitoru, N. Kroo, M. Miyagi, R. Pratesi, J. M. Wolfrum, eds., Proc. SPIE2328, 128–132 (1994).
[CrossRef]

Blades, M. W.

Boustany, N.

R. Manoharan, Y. Wang, N. Boustany, J. F. Brennan, J. J. Baraga, R. R. Dasari, J. Van Dam, S. Singer, M. S. Feld, “Raman spectroscopy for cancer detection: instrument development and tissue diagnosis,” in Biomedical Optoelectronic Devices and Systems II, N. I. Croitoru, N. Kroo, M. Miyagi, R. Pratesi, J. M. Wolfrum, eds., Proc. SPIE2328, 128–132 (1994).
[CrossRef]

Brennan, J. F.

R. Manoharan, Y. Wang, N. Boustany, J. F. Brennan, J. J. Baraga, R. R. Dasari, J. Van Dam, S. Singer, M. S. Feld, “Raman spectroscopy for cancer detection: instrument development and tissue diagnosis,” in Biomedical Optoelectronic Devices and Systems II, N. I. Croitoru, N. Kroo, M. Miyagi, R. Pratesi, J. M. Wolfrum, eds., Proc. SPIE2328, 128–132 (1994).
[CrossRef]

Brimacombe, R. K.

Cooney, T. F.

Copeland, R. A.

R. A. Copeland, T. G. Spiro, “Secondary structure determination in proteins from deep (192–222 nm) ultraviolet Raman spectroscopy,” Biochemistry 26, 2134–2139 (1987).
[CrossRef] [PubMed]

Dao, N. Q.

Dasari, R. R.

R. Manoharan, Y. Wang, N. Boustany, J. F. Brennan, J. J. Baraga, R. R. Dasari, J. Van Dam, S. Singer, M. S. Feld, “Raman spectroscopy for cancer detection: instrument development and tissue diagnosis,” in Biomedical Optoelectronic Devices and Systems II, N. I. Croitoru, N. Kroo, M. Miyagi, R. Pratesi, J. M. Wolfrum, eds., Proc. SPIE2328, 128–132 (1994).
[CrossRef]

Desiderio, R.

Fabian, H.

H. Hitzler, C. Pfleiderer, N. Leclerc, J. Wolfrum, K. O. Greulich, H. Fabian, “KrF-laser irradiation induced defects in all silica optical fibers,” J. Non Cryst. Solids 149, 107–114 (1994).
[CrossRef]

H. Fabian, U. Grzesik, K.-H. Wörner, K. F. Klein, “Optical fibers for UV applications,” in Glasses for Optoelectronics II, G. C. Righini, ed., Proc. SPIE1513, 168–173 (1991).
[CrossRef]

Fan, Y.

X. Zhao, D. Lu, S. Jiang, C. Mao, Y. Fan, C. An, Z. Li, “Interaction between intercalation type anticancer drugs and DNA studied by ultraviolet resonance Raman spectroscopy,” Sci. China Ser. B 38, 555–563 (1995).

Feld, M. S.

R. Manoharan, Y. Wang, N. Boustany, J. F. Brennan, J. J. Baraga, R. R. Dasari, J. Van Dam, S. Singer, M. S. Feld, “Raman spectroscopy for cancer detection: instrument development and tissue diagnosis,” in Biomedical Optoelectronic Devices and Systems II, N. I. Croitoru, N. Kroo, M. Miyagi, R. Pratesi, J. M. Wolfrum, eds., Proc. SPIE2328, 128–132 (1994).
[CrossRef]

Fevrier, H.

Fleischmann, M.

R. L. McCreery, M. Fleischmann, P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem. 55, 146–148 (1983).
[CrossRef]

Fodor, S. P. A.

S. P. A. Fodor, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of DNA with 200–266 nm laser excitation,” J. Am. Chem. Soc. 108, 3198–3205 (1986).
[CrossRef]

S. P. A. Fodor, R. P. Rava, T. R. Hays, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985).
[CrossRef]

Fresco, J. R.

I. Mukerji, M. C. Schiber, T. G. Spiro, J. R. Fresco, “A UV resonance Raman study of d(A+-G)10, a single-stranded helix without stacked or paired bases,” Biochemistry 34, 14300–14303 (1995).
[CrossRef] [PubMed]

Georg Schulze, H

H Georg Schulze, “The development of a fiber-optic probe for the in vitro resonance Raman spectroscopy of neurotransmitters,” Ph.D. dissertation (University of British Columbia, Vancouver, British Columbia, Canada, 1996).

Gleason, K. K.

D. H. Levy, K. K. Gleason, M. Rothschild, J. H. C. Sedlacek, “The role of hydrogen in excimer-laser-induced damage of fused silica,” J. Appl. Phys. 73, 2809–2815 (1993).
[CrossRef]

Greek, L. S.

Greulich, K. O.

H. Hitzler, C. Pfleiderer, N. Leclerc, J. Wolfrum, K. O. Greulich, H. Fabian, “KrF-laser irradiation induced defects in all silica optical fibers,” J. Non Cryst. Solids 149, 107–114 (1994).
[CrossRef]

H. Hitzler, N. Leclerc, K. F. Klein, K. O. Greulich, J. Wolfrum, “Optical fiber transmission of excimer laser pulses,” in Excimer Lasers and Applications, D. Basting, ed., Proc. SPIE1023, 249–252 (1988).
[CrossRef]

Grzesik, U.

H. Fabian, U. Grzesik, K.-H. Wörner, K. F. Klein, “Optical fibers for UV applications,” in Glasses for Optoelectronics II, G. C. Righini, ed., Proc. SPIE1513, 168–173 (1991).
[CrossRef]

P. Karlitschek, K. F. Klein, G. Hillrichs, U. Grzesik, “Improved UV-fiber for 193-nm excimer laser applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 127–134 (1996).
[CrossRef]

Haynes, C. A.

Hays, T. R.

S. P. A. Fodor, R. P. Rava, T. R. Hays, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985).
[CrossRef]

Hendra, P.

R. L. McCreery, M. Fleischmann, P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem. 55, 146–148 (1983).
[CrossRef]

Hillrichs, G.

P. Karlitschek, G. Hillrichs, K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
[CrossRef]

P. Karlitschek, K. F. Klein, G. Hillrichs, U. Grzesik, “Improved UV-fiber for 193-nm excimer laser applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 127–134 (1996).
[CrossRef]

K. F. Klein, G. Hillrichs, P. Karlitschek, K. Mann, “Possibilities and limitations for the transmission of excimer laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 564–573 (1997).

P. Karlitschek, K. F. Klein, G. Hillrichs, “Suppression of solarization effects in optical fibers for 266-nm laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 620–625 (1997).

Hitzler, H.

H. Hitzler, C. Pfleiderer, N. Leclerc, J. Wolfrum, K. O. Greulich, H. Fabian, “KrF-laser irradiation induced defects in all silica optical fibers,” J. Non Cryst. Solids 149, 107–114 (1994).
[CrossRef]

H. Hitzler, N. Leclerc, K. F. Klein, K. O. Greulich, J. Wolfrum, “Optical fiber transmission of excimer laser pulses,” in Excimer Lasers and Applications, D. Basting, ed., Proc. SPIE1023, 249–252 (1988).
[CrossRef]

Hutley, M. C.

A. C. Albrecht, M. C. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys. 55, 4438–4443 (1971).
[CrossRef]

Jiang, S.

X. Zhao, D. Lu, S. Jiang, C. Mao, Y. Fan, C. An, Z. Li, “Interaction between intercalation type anticancer drugs and DNA studied by ultraviolet resonance Raman spectroscopy,” Sci. China Ser. B 38, 555–563 (1995).

Jiaying, M.

Johnson, C. R.

S. A. Asher, M. Ludwig, C. R. Johnson, “UV resonance Raman excitation profiles of the aromatic amino acids,” J. Am. Chem. Soc. 108, 3186–3197 (1986).
[CrossRef]

C. R. Johnson, M. Ludwig, S. O’Donnell, S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106, 5008–5010 (1984).
[CrossRef]

Jordan, T.

J. C. Austin, T. Jordan, T. G. Spiro, “Ultraviolet resonance Raman studies of proteins and related model compounds,” in Biomedical Spectroscopy, Vol. 20A of Advances in Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, West Sussex, UK, 1993), pp. 55–127.

Jouan, M.

Karlitschek, P.

P. Karlitschek, G. Hillrichs, K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
[CrossRef]

P. Karlitschek, K. F. Klein, G. Hillrichs, U. Grzesik, “Improved UV-fiber for 193-nm excimer laser applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 127–134 (1996).
[CrossRef]

P. Karlitschek, K. F. Klein, G. Hillrichs, “Suppression of solarization effects in optical fibers for 266-nm laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 620–625 (1997).

K. F. Klein, G. Hillrichs, P. Karlitschek, K. Mann, “Possibilities and limitations for the transmission of excimer laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 564–573 (1997).

Klein, K. F.

P. Karlitschek, G. Hillrichs, K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
[CrossRef]

P. Karlitschek, K. F. Klein, G. Hillrichs, U. Grzesik, “Improved UV-fiber for 193-nm excimer laser applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 127–134 (1996).
[CrossRef]

H. Fabian, U. Grzesik, K.-H. Wörner, K. F. Klein, “Optical fibers for UV applications,” in Glasses for Optoelectronics II, G. C. Righini, ed., Proc. SPIE1513, 168–173 (1991).
[CrossRef]

P. Karlitschek, K. F. Klein, G. Hillrichs, “Suppression of solarization effects in optical fibers for 266-nm laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 620–625 (1997).

K. F. Klein, G. Hillrichs, P. Karlitschek, K. Mann, “Possibilities and limitations for the transmission of excimer laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 564–573 (1997).

H. Hitzler, N. Leclerc, K. F. Klein, K. O. Greulich, J. Wolfrum, “Optical fiber transmission of excimer laser pulses,” in Excimer Lasers and Applications, D. Basting, ed., Proc. SPIE1023, 249–252 (1988).
[CrossRef]

Leclerc, N.

H. Hitzler, C. Pfleiderer, N. Leclerc, J. Wolfrum, K. O. Greulich, H. Fabian, “KrF-laser irradiation induced defects in all silica optical fibers,” J. Non Cryst. Solids 149, 107–114 (1994).
[CrossRef]

H. Hitzler, N. Leclerc, K. F. Klein, K. O. Greulich, J. Wolfrum, “Optical fiber transmission of excimer laser pulses,” in Excimer Lasers and Applications, D. Basting, ed., Proc. SPIE1023, 249–252 (1988).
[CrossRef]

Leopold, K. E.

Levy, D. H.

D. H. Levy, K. K. Gleason, M. Rothschild, J. H. C. Sedlacek, “The role of hydrogen in excimer-laser-induced damage of fused silica,” J. Appl. Phys. 73, 2809–2815 (1993).
[CrossRef]

Li, Z.

X. Zhao, D. Lu, S. Jiang, C. Mao, Y. Fan, C. An, Z. Li, “Interaction between intercalation type anticancer drugs and DNA studied by ultraviolet resonance Raman spectroscopy,” Sci. China Ser. B 38, 555–563 (1995).

Lu, D.

X. Zhao, D. Lu, S. Jiang, C. Mao, Y. Fan, C. An, Z. Li, “Interaction between intercalation type anticancer drugs and DNA studied by ultraviolet resonance Raman spectroscopy,” Sci. China Ser. B 38, 555–563 (1995).

Ludwig, M.

S. A. Asher, M. Ludwig, C. R. Johnson, “UV resonance Raman excitation profiles of the aromatic amino acids,” J. Am. Chem. Soc. 108, 3186–3197 (1986).
[CrossRef]

C. R. Johnson, M. Ludwig, S. O’Donnell, S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106, 5008–5010 (1984).
[CrossRef]

Mann, K.

K. F. Klein, G. Hillrichs, P. Karlitschek, K. Mann, “Possibilities and limitations for the transmission of excimer laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 564–573 (1997).

Manoharan, R.

R. Manoharan, Y. Wang, N. Boustany, J. F. Brennan, J. J. Baraga, R. R. Dasari, J. Van Dam, S. Singer, M. S. Feld, “Raman spectroscopy for cancer detection: instrument development and tissue diagnosis,” in Biomedical Optoelectronic Devices and Systems II, N. I. Croitoru, N. Kroo, M. Miyagi, R. Pratesi, J. M. Wolfrum, eds., Proc. SPIE2328, 128–132 (1994).
[CrossRef]

Mao, C.

X. Zhao, D. Lu, S. Jiang, C. Mao, Y. Fan, C. An, Z. Li, “Interaction between intercalation type anticancer drugs and DNA studied by ultraviolet resonance Raman spectroscopy,” Sci. China Ser. B 38, 555–563 (1995).

McCreery, R. L.

S. D. Schwab, R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

R. L. McCreery, M. Fleischmann, P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem. 55, 146–148 (1983).
[CrossRef]

Mihailov, S.

Mukerji, I.

I. Mukerji, M. C. Schiber, T. G. Spiro, J. R. Fresco, “A UV resonance Raman study of d(A+-G)10, a single-stranded helix without stacked or paired bases,” Biochemistry 34, 14300–14303 (1995).
[CrossRef] [PubMed]

Myrick, M. L.

O’Donnell, S.

C. R. Johnson, M. Ludwig, S. O’Donnell, S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106, 5008–5010 (1984).
[CrossRef]

Pfleiderer, C.

H. Hitzler, C. Pfleiderer, N. Leclerc, J. Wolfrum, K. O. Greulich, H. Fabian, “KrF-laser irradiation induced defects in all silica optical fibers,” J. Non Cryst. Solids 149, 107–114 (1994).
[CrossRef]

Plaza, P.

Rava, R. P.

R. P. Rava, T. G. Spiro, “Resonance enhancement in the ultraviolet Raman spectra of aromatic amino acids,” J. Phys. Chem. 89, 1856–1861 (1985).
[CrossRef]

S. P. A. Fodor, R. P. Rava, T. R. Hays, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985).
[CrossRef]

Rodgers, K. R.

J. C. Austin, K. R. Rodgers, T. G. Spiro, “Protein structure from ultraviolet resonance Raman spectroscopy,” in Methods in Enzymology, J. F. Riordan, B. L. Vallee, eds. (Academic, San Diego, Calif., 1993), Vol. 226, pp. 374–396.
[CrossRef]

Rothschild, M.

D. H. Levy, K. K. Gleason, M. Rothschild, J. H. C. Sedlacek, “The role of hydrogen in excimer-laser-induced damage of fused silica,” J. Appl. Phys. 73, 2809–2815 (1993).
[CrossRef]

Russell, M. P.

R. Tuma, J. H. K. Bamford, D. H. Bamford, M. P. Russell, G. J. Thomas, “Structure, interactions, and dynamics of PRD1 virus: I. Coupling of subunit folding and capsid assembly,” J. Mol. Biol. 257, 87–101 (1996).
[CrossRef] [PubMed]

Saisse, H.

Schiber, M. C.

I. Mukerji, M. C. Schiber, T. G. Spiro, J. R. Fresco, “A UV resonance Raman study of d(A+-G)10, a single-stranded helix without stacked or paired bases,” Biochemistry 34, 14300–14303 (1995).
[CrossRef] [PubMed]

Schulze, H. G.

Schwab, S. D.

S. D. Schwab, R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

Sedlacek, J. H. C.

D. H. Levy, K. K. Gleason, M. Rothschild, J. H. C. Sedlacek, “The role of hydrogen in excimer-laser-induced damage of fused silica,” J. Appl. Phys. 73, 2809–2815 (1993).
[CrossRef]

Singer, S.

R. Manoharan, Y. Wang, N. Boustany, J. F. Brennan, J. J. Baraga, R. R. Dasari, J. Van Dam, S. Singer, M. S. Feld, “Raman spectroscopy for cancer detection: instrument development and tissue diagnosis,” in Biomedical Optoelectronic Devices and Systems II, N. I. Croitoru, N. Kroo, M. Miyagi, R. Pratesi, J. M. Wolfrum, eds., Proc. SPIE2328, 128–132 (1994).
[CrossRef]

Skinner, H. T.

Skuja, L.

L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non Cryst. Solids 179, 51–69 (1994).
[CrossRef]

Song, S.

S. Song, S. A. Asher, “UV resonance Raman studies of peptide conformation in poly(l-lysine), poly(l-glutamic acid), and model complexes: the basis for protein secondary structure determinations,” J. Am. Chem. Soc. 111, 4295–4305 (1989).
[CrossRef]

Spiro, T. G.

I. Mukerji, M. C. Schiber, T. G. Spiro, J. R. Fresco, “A UV resonance Raman study of d(A+-G)10, a single-stranded helix without stacked or paired bases,” Biochemistry 34, 14300–14303 (1995).
[CrossRef] [PubMed]

C. Su, Y. Wang, T. G. Spiro, “Saturation effects on ultraviolet resonance Raman intensities: excimer/YAG laser comparison and aromatic amino acid cross-sections,” J. Raman Spectrosc. 21, 435–440 (1990).
[CrossRef]

R. A. Copeland, T. G. Spiro, “Secondary structure determination in proteins from deep (192–222 nm) ultraviolet Raman spectroscopy,” Biochemistry 26, 2134–2139 (1987).
[CrossRef] [PubMed]

S. P. A. Fodor, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of DNA with 200–266 nm laser excitation,” J. Am. Chem. Soc. 108, 3198–3205 (1986).
[CrossRef]

R. P. Rava, T. G. Spiro, “Resonance enhancement in the ultraviolet Raman spectra of aromatic amino acids,” J. Phys. Chem. 89, 1856–1861 (1985).
[CrossRef]

S. P. A. Fodor, R. P. Rava, T. R. Hays, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985).
[CrossRef]

J. C. Austin, T. Jordan, T. G. Spiro, “Ultraviolet resonance Raman studies of proteins and related model compounds,” in Biomedical Spectroscopy, Vol. 20A of Advances in Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, West Sussex, UK, 1993), pp. 55–127.

J. C. Austin, K. R. Rodgers, T. G. Spiro, “Protein structure from ultraviolet resonance Raman spectroscopy,” in Methods in Enzymology, J. F. Riordan, B. L. Vallee, eds. (Academic, San Diego, Calif., 1993), Vol. 226, pp. 374–396.
[CrossRef]

Su, C.

C. Su, Y. Wang, T. G. Spiro, “Saturation effects on ultraviolet resonance Raman intensities: excimer/YAG laser comparison and aromatic amino acid cross-sections,” J. Raman Spectrosc. 21, 435–440 (1990).
[CrossRef]

Taylor, R. S.

Thamann, T. J.

T. J. Thamann, “Probing local protein structure with ultraviolet resonance Raman spectroscopy,” in Spectroscopic Methods for Determining Protein Structure in Solution, H. A. Havel, ed. (VCH, New York, 1996), pp. 96–134.

Thomas, G. J.

R. Tuma, J. H. K. Bamford, D. H. Bamford, M. P. Russell, G. J. Thomas, “Structure, interactions, and dynamics of PRD1 virus: I. Coupling of subunit folding and capsid assembly,” J. Mol. Biol. 257, 87–101 (1996).
[CrossRef] [PubMed]

Tuma, R.

R. Tuma, J. H. K. Bamford, D. H. Bamford, M. P. Russell, G. J. Thomas, “Structure, interactions, and dynamics of PRD1 virus: I. Coupling of subunit folding and capsid assembly,” J. Mol. Biol. 257, 87–101 (1996).
[CrossRef] [PubMed]

Turner, R. F. B.

Van Dam, J.

R. Manoharan, Y. Wang, N. Boustany, J. F. Brennan, J. J. Baraga, R. R. Dasari, J. Van Dam, S. Singer, M. S. Feld, “Raman spectroscopy for cancer detection: instrument development and tissue diagnosis,” in Biomedical Optoelectronic Devices and Systems II, N. I. Croitoru, N. Kroo, M. Miyagi, R. Pratesi, J. M. Wolfrum, eds., Proc. SPIE2328, 128–132 (1994).
[CrossRef]

Van Wart, H. E.

Y. Wang, H. E. Van Wart, “Raman and resonance Raman spectroscopy,” in Methods in Enzymology, J. F. Riordan, B. L. Vallee, eds. (Academic, San Diego, Calif., 1993), Vol. 226, pp. 319–396.
[CrossRef]

Wang, Y.

C. Su, Y. Wang, T. G. Spiro, “Saturation effects on ultraviolet resonance Raman intensities: excimer/YAG laser comparison and aromatic amino acid cross-sections,” J. Raman Spectrosc. 21, 435–440 (1990).
[CrossRef]

R. Manoharan, Y. Wang, N. Boustany, J. F. Brennan, J. J. Baraga, R. R. Dasari, J. Van Dam, S. Singer, M. S. Feld, “Raman spectroscopy for cancer detection: instrument development and tissue diagnosis,” in Biomedical Optoelectronic Devices and Systems II, N. I. Croitoru, N. Kroo, M. Miyagi, R. Pratesi, J. M. Wolfrum, eds., Proc. SPIE2328, 128–132 (1994).
[CrossRef]

Y. Wang, H. E. Van Wart, “Raman and resonance Raman spectroscopy,” in Methods in Enzymology, J. F. Riordan, B. L. Vallee, eds. (Academic, San Diego, Calif., 1993), Vol. 226, pp. 319–396.
[CrossRef]

Weeks, R. A.

R. A. Weeks, “The many varieties of E′-centers: a review,” J. Non Cryst. Solids 179, 1–9 (1994).
[CrossRef]

Wolfrum, J.

H. Hitzler, C. Pfleiderer, N. Leclerc, J. Wolfrum, K. O. Greulich, H. Fabian, “KrF-laser irradiation induced defects in all silica optical fibers,” J. Non Cryst. Solids 149, 107–114 (1994).
[CrossRef]

H. Hitzler, N. Leclerc, K. F. Klein, K. O. Greulich, J. Wolfrum, “Optical fiber transmission of excimer laser pulses,” in Excimer Lasers and Applications, D. Basting, ed., Proc. SPIE1023, 249–252 (1988).
[CrossRef]

Wörner, K.-H.

H. Fabian, U. Grzesik, K.-H. Wörner, K. F. Klein, “Optical fibers for UV applications,” in Glasses for Optoelectronics II, G. C. Righini, ed., Proc. SPIE1513, 168–173 (1991).
[CrossRef]

Yappert, M. C.

Zhao, X.

X. Zhao, D. Lu, S. Jiang, C. Mao, Y. Fan, C. An, Z. Li, “Interaction between intercalation type anticancer drugs and DNA studied by ultraviolet resonance Raman spectroscopy,” Sci. China Ser. B 38, 555–563 (1995).

Zhong, L.

Zhu, Z. Y.

Anal. Chem. (4)

S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry: Part 1,” Anal. Chem. 65, 59A–66A (1993).

S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry: Part 2,” Anal. Chem. 65, 201A–210A (1993).
[PubMed]

S. D. Schwab, R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

R. L. McCreery, M. Fleischmann, P. Hendra, “Fiber optic probe for remote Raman spectrometry,” Anal. Chem. 55, 146–148 (1983).
[CrossRef]

Appl. Opt. (5)

Appl. Spectrosc. (6)

Biochemistry (2)

R. A. Copeland, T. G. Spiro, “Secondary structure determination in proteins from deep (192–222 nm) ultraviolet Raman spectroscopy,” Biochemistry 26, 2134–2139 (1987).
[CrossRef] [PubMed]

I. Mukerji, M. C. Schiber, T. G. Spiro, J. R. Fresco, “A UV resonance Raman study of d(A+-G)10, a single-stranded helix without stacked or paired bases,” Biochemistry 34, 14300–14303 (1995).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (5)

S. A. Asher, M. Ludwig, C. R. Johnson, “UV resonance Raman excitation profiles of the aromatic amino acids,” J. Am. Chem. Soc. 108, 3186–3197 (1986).
[CrossRef]

C. R. Johnson, M. Ludwig, S. O’Donnell, S. A. Asher, “UV resonance Raman spectroscopy of the aromatic amino acids and myoglobin,” J. Am. Chem. Soc. 106, 5008–5010 (1984).
[CrossRef]

S. Song, S. A. Asher, “UV resonance Raman studies of peptide conformation in poly(l-lysine), poly(l-glutamic acid), and model complexes: the basis for protein secondary structure determinations,” J. Am. Chem. Soc. 111, 4295–4305 (1989).
[CrossRef]

S. P. A. Fodor, R. P. Rava, T. R. Hays, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985).
[CrossRef]

S. P. A. Fodor, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of DNA with 200–266 nm laser excitation,” J. Am. Chem. Soc. 108, 3198–3205 (1986).
[CrossRef]

J. Appl. Phys. (1)

D. H. Levy, K. K. Gleason, M. Rothschild, J. H. C. Sedlacek, “The role of hydrogen in excimer-laser-induced damage of fused silica,” J. Appl. Phys. 73, 2809–2815 (1993).
[CrossRef]

J. Chem. Phys. (1)

A. C. Albrecht, M. C. Hutley, “On the dependence of vibrational Raman intensity on the wavelength of incident light,” J. Chem. Phys. 55, 4438–4443 (1971).
[CrossRef]

J. Mol. Biol. (1)

R. Tuma, J. H. K. Bamford, D. H. Bamford, M. P. Russell, G. J. Thomas, “Structure, interactions, and dynamics of PRD1 virus: I. Coupling of subunit folding and capsid assembly,” J. Mol. Biol. 257, 87–101 (1996).
[CrossRef] [PubMed]

J. Non Cryst. Solids (3)

R. A. Weeks, “The many varieties of E′-centers: a review,” J. Non Cryst. Solids 179, 1–9 (1994).
[CrossRef]

L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non Cryst. Solids 179, 51–69 (1994).
[CrossRef]

H. Hitzler, C. Pfleiderer, N. Leclerc, J. Wolfrum, K. O. Greulich, H. Fabian, “KrF-laser irradiation induced defects in all silica optical fibers,” J. Non Cryst. Solids 149, 107–114 (1994).
[CrossRef]

J. Phys. Chem. (1)

R. P. Rava, T. G. Spiro, “Resonance enhancement in the ultraviolet Raman spectra of aromatic amino acids,” J. Phys. Chem. 89, 1856–1861 (1985).
[CrossRef]

J. Raman Spectrosc. (1)

C. Su, Y. Wang, T. G. Spiro, “Saturation effects on ultraviolet resonance Raman intensities: excimer/YAG laser comparison and aromatic amino acid cross-sections,” J. Raman Spectrosc. 21, 435–440 (1990).
[CrossRef]

Opt. Commun. (1)

P. Karlitschek, G. Hillrichs, K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
[CrossRef]

Sci. China Ser. B (1)

X. Zhao, D. Lu, S. Jiang, C. Mao, Y. Fan, C. An, Z. Li, “Interaction between intercalation type anticancer drugs and DNA studied by ultraviolet resonance Raman spectroscopy,” Sci. China Ser. B 38, 555–563 (1995).

Other (13)

Y. Wang, H. E. Van Wart, “Raman and resonance Raman spectroscopy,” in Methods in Enzymology, J. F. Riordan, B. L. Vallee, eds. (Academic, San Diego, Calif., 1993), Vol. 226, pp. 319–396.
[CrossRef]

H. Fabian, U. Grzesik, K.-H. Wörner, K. F. Klein, “Optical fibers for UV applications,” in Glasses for Optoelectronics II, G. C. Righini, ed., Proc. SPIE1513, 168–173 (1991).
[CrossRef]

P. Karlitschek, K. F. Klein, G. Hillrichs, U. Grzesik, “Improved UV-fiber for 193-nm excimer laser applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 127–134 (1996).
[CrossRef]

K. F. Klein, G Hillrichs, P Karlitschek, U Grzesik, “Improved optical fibers for excimer laser applications,” presented at LASERmed 95, Munich, June 1995.

R. D. McLachlan, G. L. Jewett, J. C. Evans, “Fiber optic probe for sensitive Raman analysis,” U.S. patent4,573,761 (4March1986).

H Georg Schulze, “The development of a fiber-optic probe for the in vitro resonance Raman spectroscopy of neurotransmitters,” Ph.D. dissertation (University of British Columbia, Vancouver, British Columbia, Canada, 1996).

J. C. Austin, K. R. Rodgers, T. G. Spiro, “Protein structure from ultraviolet resonance Raman spectroscopy,” in Methods in Enzymology, J. F. Riordan, B. L. Vallee, eds. (Academic, San Diego, Calif., 1993), Vol. 226, pp. 374–396.
[CrossRef]

J. C. Austin, T. Jordan, T. G. Spiro, “Ultraviolet resonance Raman studies of proteins and related model compounds,” in Biomedical Spectroscopy, Vol. 20A of Advances in Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, West Sussex, UK, 1993), pp. 55–127.

T. J. Thamann, “Probing local protein structure with ultraviolet resonance Raman spectroscopy,” in Spectroscopic Methods for Determining Protein Structure in Solution, H. A. Havel, ed. (VCH, New York, 1996), pp. 96–134.

R. Manoharan, Y. Wang, N. Boustany, J. F. Brennan, J. J. Baraga, R. R. Dasari, J. Van Dam, S. Singer, M. S. Feld, “Raman spectroscopy for cancer detection: instrument development and tissue diagnosis,” in Biomedical Optoelectronic Devices and Systems II, N. I. Croitoru, N. Kroo, M. Miyagi, R. Pratesi, J. M. Wolfrum, eds., Proc. SPIE2328, 128–132 (1994).
[CrossRef]

P. Karlitschek, K. F. Klein, G. Hillrichs, “Suppression of solarization effects in optical fibers for 266-nm laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 620–625 (1997).

K. F. Klein, G. Hillrichs, P. Karlitschek, K. Mann, “Possibilities and limitations for the transmission of excimer laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 564–573 (1997).

H. Hitzler, N. Leclerc, K. F. Klein, K. O. Greulich, J. Wolfrum, “Optical fiber transmission of excimer laser pulses,” in Excimer Lasers and Applications, D. Basting, ed., Proc. SPIE1023, 249–252 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram showing the sequential steps in the fabrication of a novel fiber-optic probe for UVRRS. A, IUV fiber; B, SUV fiber; C, photoresist; D, aluminum film; E, silicone rubber collar. 1, apply photoresist to polished fibers; 2, selectively polish away photoresist and fiber; 3, apply aluminum film; 4, remove photoresist; 5, attach fibers.

Fig. 2
Fig. 2

Total throughput versus time for 56.5-cm segments of 400-μm-diameter SUV fiber (dotted curve), 400-μm-diameter IUV fiber (solid curve), and 600-μm-diameter IUV fiber (dashed curve). Excitation is 50-μJ, 20-Hz, ∼3-ns, 225-nm pulses.

Fig. 3
Fig. 3

Initial (filled symbols) and steady-state (open symbols) E out versus E in for 56.5-cm segments of 400-μm-diameter IUV fiber (squares) and 600-μm-diameter IUV fiber (triangles). Excitation is 20-Hz, ∼3-ns, 225-nm pulses.

Fig. 4
Fig. 4

Initial (squares) and steady-state (circles) throughput for a 56.5-cm length of IUV fiber as a function of wavelength for 20-Hz, ∼3-ns, 50 ± 4-μJ pulses.

Fig. 5
Fig. 5

(a) DUV RS data of neat ethanol with A, a flush probe (400-μm-diameter excitation fiber, 600-μm-diameter collection fiber); B, an angled and mirrored probe (400-μm-diameter excitation fiber, 600-μm-diameter collection fiber); and C, an angled, mirrored, lensed, and faceted probe (600-μm-diameter excitation fiber, 600-μm-diameter collection fiber). The average power into excitation fibers was 1 mW. We used 20-Hz, ∼3-ns, 225-nm pulses. The integration time was 30 s. (b) UVRRS data of 200-μg/ml hen egg-white lysozyme. Probe designations are the same as those in (a). The average power into excitation fibers was 1.2 mW. We used 20-Hz, ∼3-ns, 230-nm pulses. The integration time was 90 s. Sloping backgrounds were subtracted, and spectra were vertically translated for clarity.

Fig. 6
Fig. 6

Fiber-optic UVRRS data of aqueous CBD protein (200 μg/ml, λexc = 227 nm, 18-min integration), aqueous TRP (100 μM, λexc = 227 nm, 5-min integration), aqueous PLL (150 μg/ml, λexc = 208 nm, 10-min integration) and TSTN dissolved in ethanol (0.5 mM, λexc = 245 nm, 4.5-min integration). Asterixes indicate solvent peaks. All data were obtained with 20-Hz, ∼3-ns pulses. Sloping backgrounds and approximately 1640-cm-1 water peak were subtracted, and spectra were vertically translated for clarity. Spectra are not to scale.

Fig. 7
Fig. 7

Circles represent the working curve for TRP fiber-optic UVRRS with 1010-cm-1 peak height used. Squares represent the approximately 1640-cm-1 water peak height as a function of TRP concentration. Excitation was at 227 nm, and the probe was of the type shown in Fig. 1 with excitation- and collection-fiber diameters of 400 and 600 μm, respectively.

Fig. 8
Fig. 8

S c (normalized to 1) and component terms (normalized to 0.75 for clarity) for the approximately 1010-cm-1 TRP residue signal in 50-μg/ml hen egg-white lysozyme with a 400-μm (excitation-fiber diameter), 600-μm (collection-fiber diameter) A/M probe. The X’s indicate experimental points. See the text for details.

Tables (1)

Tables Icon

Table 1 Approximate Fits and Parameters for Components of Sc(λ)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dIdz=-α+ΔαUVI-βI2,
Sλ, c=Lλtηeλcσληpλ, cηsληmληdλ,
Scλ=Kcηeλσληp,cληsλ,
Snaam=Snacaa.
ηpam=SnaamLtηeηdcnaσna.
am=i ciiλ,
ηpλ, cj=Snaamλ, cjLtηeηdcnaσna,

Metrics