Abstract

Matched filtering of megahertz-bandwidth signals by use of holograms recorded in a photorefractive crystal is demonstrated. Holographic recording of rapidly varying signals has heretofore been hampered by the relatively slow response of photorefractive crystals. For the first time, to our knowledge, synchronization between waveforms and short optical sampling pulses is used with acousto-optic electrical-to-optical conversion to build up static holograms of rf waveforms in a SBN crystal. Readout with a continuous input signal yields a time-resolved correlation with stored waveforms.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Gunter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988); Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  2. M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, “Photorefractive properties of strontium-barium niobate,” J. Appl. Phys. 62, 374–380 (1987).
    [CrossRef]
  3. J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
    [CrossRef]
  4. D. L. Staebler, J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
    [CrossRef]
  5. J. P. Huignard, F. Micheron, “High-sensitivity read-write volume holographic storage in Bi12SiO20 and Bi12GeO20 crystals,” Appl. Phys. Lett. 29, 591–593 (1976).
    [CrossRef]
  6. R. B. Bylsma, P. M. Bridenbaugh, D. H. Olson, A. M. Glass, “Photorefractive properties of doped cadmium telluride,” Appl. Phys. Lett. 51, 889–891 (1987).
    [CrossRef]
  7. M. B. Klein, “Beam coupling in undoped GaAs at 1.06 µm using the photorefractive effect,” Opt. Lett. 9, 350–352 (1984).
    [CrossRef] [PubMed]
  8. A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984).
    [CrossRef]
  9. D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
    [CrossRef]
  10. R. J. Anderson, E. J. Sharp, G. L. Wood, W. W. Clark, Q. Vuong, G. J. Salamo, R. R. Neurgaonkar, “Mutually pumped phase conjugator as a moving-object correlator,” Opt. Lett. 18, 986–988 (1993).
    [CrossRef] [PubMed]
  11. B. Lee, “Optical programmable radio-frequency matched filtering using photorefractive effect,” Ph.D. dissertation (Department of Electrical Engineering, University of California, Berkeley, Berkeley, Calif., 1993).
  12. L. H. Acioli, M. Ulman, E. P. Ippen, J. G. Fujimoto, H. Kong, B. S. Chen, M. Cronin-Golomb, “Femtosecond temporal encoding in barium titanate,” Opt. Lett. 16, 1984–1986 (1991).
    [CrossRef] [PubMed]
  13. K. B. Hill, K. G. Purchase, D. J. Brady, “Pulsed-image generation and detection,” Opt. Lett. 20, 1201–1203 (1995).
    [CrossRef] [PubMed]
  14. Y. T. Mazurenko, V. S. Udaltsov, A. V. Veniaminov, E. Dopel, P. Kuhmstedt, “Recording and reconstruction of femtosecond light pulses using volume holograms,” Opt. Commun. 96, 202–207 (1993).
    [CrossRef]
  15. J. O. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
    [CrossRef]
  16. H. Rajbenbach, C. Touret, J.-P. Huignard, M. Curon, C. Bricot, “Fingerprint database search by optical correlation,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 214–223 (1996).
  17. H. Rajbenbach, S. Bann, P. Refregier, P. Joffre, J.-P. Huignard, H.-S. Buchkremer, A. S. Jensen, E. Rasmussen, K.-H. Brenner, G. Lohman, “Compact photorefractive correlator for robotic applications,” Appl. Opt. 31, 5666–5674 (1992).
    [CrossRef] [PubMed]
  18. J. H. Hong, T. Y. Chang, “Photorefractive time-integrating correlator,” Opt. Lett. 16, 333–335 (1991).
    [CrossRef] [PubMed]
  19. D. Psaltis, J. Yu, J. Hong, “Bias-free time-integrating optical correlator using a photorefractive crystal,” Appl. Opt. 24, 3860–3865 (1985).
    [CrossRef] [PubMed]
  20. See, for example, L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, London, 1981).
  21. P. Refregier, L. Solymar, H. Rajbenbach, J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with a moving grating,” J. Appl. Phys. 58, 45–57 (1985).
    [CrossRef]
  22. E. Yin, B. Lee, T. K. Gustafson, A. Spiridon, J. Watjen, D. Cooper, R. Martinelli, “Stable grating formation in nearly degenerate four-wave mixing,” Opt. Lett. 18, 229–231 (1993).
    [CrossRef] [PubMed]
  23. X. S. Yao, V. Dominic, J. Feinberg, “Theory of beam couplingand pulse shaping of mode-locked laser pulses in a photorefractive crystal,” J. Opt. Soc. Am. B 7, 2347–2355 (1990).
    [CrossRef]
  24. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46–51 (1982).
    [CrossRef]
  25. V. V. Voronov, I. R. Dorosh, Y. S. Kuz’minov, N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
    [CrossRef]
  26. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]

1995 (1)

1993 (4)

1992 (1)

1991 (2)

1990 (1)

1989 (1)

D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

1987 (2)

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, “Photorefractive properties of strontium-barium niobate,” J. Appl. Phys. 62, 374–380 (1987).
[CrossRef]

R. B. Bylsma, P. M. Bridenbaugh, D. H. Olson, A. M. Glass, “Photorefractive properties of doped cadmium telluride,” Appl. Phys. Lett. 51, 889–891 (1987).
[CrossRef]

1985 (2)

P. Refregier, L. Solymar, H. Rajbenbach, J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with a moving grating,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

D. Psaltis, J. Yu, J. Hong, “Bias-free time-integrating optical correlator using a photorefractive crystal,” Appl. Opt. 24, 3860–3865 (1985).
[CrossRef] [PubMed]

1984 (2)

M. B. Klein, “Beam coupling in undoped GaAs at 1.06 µm using the photorefractive effect,” Opt. Lett. 9, 350–352 (1984).
[CrossRef] [PubMed]

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984).
[CrossRef]

1982 (1)

1980 (3)

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

J. O. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
[CrossRef]

V. V. Voronov, I. R. Dorosh, Y. S. Kuz’minov, N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

1976 (1)

J. P. Huignard, F. Micheron, “High-sensitivity read-write volume holographic storage in Bi12SiO20 and Bi12GeO20 crystals,” Appl. Phys. Lett. 29, 591–593 (1976).
[CrossRef]

1972 (1)

D. L. Staebler, J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

Acioli, L. H.

Amodei, J. J.

D. L. Staebler, J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

Anderson, D. Z.

D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

Anderson, R. J.

Ballman, A. A.

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984).
[CrossRef]

Bann, S.

Brady, D. J.

Brenner, K.-H.

Bricot, C.

H. Rajbenbach, C. Touret, J.-P. Huignard, M. Curon, C. Bricot, “Fingerprint database search by optical correlation,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 214–223 (1996).

Bridenbaugh, P. M.

R. B. Bylsma, P. M. Bridenbaugh, D. H. Olson, A. M. Glass, “Photorefractive properties of doped cadmium telluride,” Appl. Phys. Lett. 51, 889–891 (1987).
[CrossRef]

Buchkremer, H.-S.

Bylsma, R. B.

R. B. Bylsma, P. M. Bridenbaugh, D. H. Olson, A. M. Glass, “Photorefractive properties of doped cadmium telluride,” Appl. Phys. Lett. 51, 889–891 (1987).
[CrossRef]

Chang, T. Y.

Chen, B. S.

Clark, W. W.

Cooke, D. J.

See, for example, L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, London, 1981).

Cooper, D.

Cory, W. K.

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, “Photorefractive properties of strontium-barium niobate,” J. Appl. Phys. 62, 374–380 (1987).
[CrossRef]

Cronin-Golomb, M.

Curon, M.

H. Rajbenbach, C. Touret, J.-P. Huignard, M. Curon, C. Bricot, “Fingerprint database search by optical correlation,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 214–223 (1996).

Dominic, V.

Dopel, E.

Y. T. Mazurenko, V. S. Udaltsov, A. V. Veniaminov, E. Dopel, P. Kuhmstedt, “Recording and reconstruction of femtosecond light pulses using volume holograms,” Opt. Commun. 96, 202–207 (1993).
[CrossRef]

Dorosh, I. R.

V. V. Voronov, I. R. Dorosh, Y. S. Kuz’minov, N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

Ewbank, M. D.

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, “Photorefractive properties of strontium-barium niobate,” J. Appl. Phys. 62, 374–380 (1987).
[CrossRef]

Feinberg, J.

X. S. Yao, V. Dominic, J. Feinberg, “Theory of beam couplingand pulse shaping of mode-locked laser pulses in a photorefractive crystal,” J. Opt. Soc. Am. B 7, 2347–2355 (1990).
[CrossRef]

D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, “Photorefractive properties of strontium-barium niobate,” J. Appl. Phys. 62, 374–380 (1987).
[CrossRef]

J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46–51 (1982).
[CrossRef]

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Fujimoto, J. G.

Glass, A. M.

R. B. Bylsma, P. M. Bridenbaugh, D. H. Olson, A. M. Glass, “Photorefractive properties of doped cadmium telluride,” Appl. Phys. Lett. 51, 889–891 (1987).
[CrossRef]

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984).
[CrossRef]

Gustafson, T. K.

Heiman, D.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Hellwarth, R. W.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Hill, K. B.

Hong, J.

Hong, J. H.

Huignard, J. P.

J. P. Huignard, F. Micheron, “High-sensitivity read-write volume holographic storage in Bi12SiO20 and Bi12GeO20 crystals,” Appl. Phys. Lett. 29, 591–593 (1976).
[CrossRef]

Huignard, J.-P.

H. Rajbenbach, S. Bann, P. Refregier, P. Joffre, J.-P. Huignard, H.-S. Buchkremer, A. S. Jensen, E. Rasmussen, K.-H. Brenner, G. Lohman, “Compact photorefractive correlator for robotic applications,” Appl. Opt. 31, 5666–5674 (1992).
[CrossRef] [PubMed]

P. Refregier, L. Solymar, H. Rajbenbach, J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with a moving grating,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

H. Rajbenbach, C. Touret, J.-P. Huignard, M. Curon, C. Bricot, “Fingerprint database search by optical correlation,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 214–223 (1996).

Ippen, E. P.

Jensen, A. S.

Joffre, P.

Johnson, A. M.

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984).
[CrossRef]

Klein, M. B.

Kong, H.

Kuhmstedt, P.

Y. T. Mazurenko, V. S. Udaltsov, A. V. Veniaminov, E. Dopel, P. Kuhmstedt, “Recording and reconstruction of femtosecond light pulses using volume holograms,” Opt. Commun. 96, 202–207 (1993).
[CrossRef]

Kuz’minov, Y. S.

V. V. Voronov, I. R. Dorosh, Y. S. Kuz’minov, N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

Lee, B.

E. Yin, B. Lee, T. K. Gustafson, A. Spiridon, J. Watjen, D. Cooper, R. Martinelli, “Stable grating formation in nearly degenerate four-wave mixing,” Opt. Lett. 18, 229–231 (1993).
[CrossRef] [PubMed]

B. Lee, “Optical programmable radio-frequency matched filtering using photorefractive effect,” Ph.D. dissertation (Department of Electrical Engineering, University of California, Berkeley, Berkeley, Calif., 1993).

Lohman, G.

Martinelli, R.

Mazurenko, Y. T.

Y. T. Mazurenko, V. S. Udaltsov, A. V. Veniaminov, E. Dopel, P. Kuhmstedt, “Recording and reconstruction of femtosecond light pulses using volume holograms,” Opt. Commun. 96, 202–207 (1993).
[CrossRef]

Micheron, F.

J. P. Huignard, F. Micheron, “High-sensitivity read-write volume holographic storage in Bi12SiO20 and Bi12GeO20 crystals,” Appl. Phys. Lett. 29, 591–593 (1976).
[CrossRef]

Mok, F. H.

Neurgaonkar, R. R.

R. J. Anderson, E. J. Sharp, G. L. Wood, W. W. Clark, Q. Vuong, G. J. Salamo, R. R. Neurgaonkar, “Mutually pumped phase conjugator as a moving-object correlator,” Opt. Lett. 18, 986–988 (1993).
[CrossRef] [PubMed]

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, “Photorefractive properties of strontium-barium niobate,” J. Appl. Phys. 62, 374–380 (1987).
[CrossRef]

Olson, D. H.

R. B. Bylsma, P. M. Bridenbaugh, D. H. Olson, A. M. Glass, “Photorefractive properties of doped cadmium telluride,” Appl. Phys. Lett. 51, 889–891 (1987).
[CrossRef]

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984).
[CrossRef]

Psaltis, D.

Purchase, K. G.

Rajbenbach, H.

H. Rajbenbach, S. Bann, P. Refregier, P. Joffre, J.-P. Huignard, H.-S. Buchkremer, A. S. Jensen, E. Rasmussen, K.-H. Brenner, G. Lohman, “Compact photorefractive correlator for robotic applications,” Appl. Opt. 31, 5666–5674 (1992).
[CrossRef] [PubMed]

P. Refregier, L. Solymar, H. Rajbenbach, J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with a moving grating,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

H. Rajbenbach, C. Touret, J.-P. Huignard, M. Curon, C. Bricot, “Fingerprint database search by optical correlation,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 214–223 (1996).

Rasmussen, E.

Refregier, P.

Salamo, G. J.

Sharp, E. J.

Simpson, W.

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984).
[CrossRef]

Solymar, L.

P. Refregier, L. Solymar, H. Rajbenbach, J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with a moving grating,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

See, for example, L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, London, 1981).

Spiridon, A.

Staebler, D. L.

D. L. Staebler, J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

Tanguay, A. R.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Tkachenko, N. V.

V. V. Voronov, I. R. Dorosh, Y. S. Kuz’minov, N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

Touret, C.

H. Rajbenbach, C. Touret, J.-P. Huignard, M. Curon, C. Bricot, “Fingerprint database search by optical correlation,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 214–223 (1996).

Udaltsov, V. S.

Y. T. Mazurenko, V. S. Udaltsov, A. V. Veniaminov, E. Dopel, P. Kuhmstedt, “Recording and reconstruction of femtosecond light pulses using volume holograms,” Opt. Commun. 96, 202–207 (1993).
[CrossRef]

Ulman, M.

Veniaminov, A. V.

Y. T. Mazurenko, V. S. Udaltsov, A. V. Veniaminov, E. Dopel, P. Kuhmstedt, “Recording and reconstruction of femtosecond light pulses using volume holograms,” Opt. Commun. 96, 202–207 (1993).
[CrossRef]

Voronov, V. V.

V. V. Voronov, I. R. Dorosh, Y. S. Kuz’minov, N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

Vuong, Q.

Watjen, J.

White, J. O.

J. O. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
[CrossRef]

Wood, G. L.

Yao, X. S.

Yariv, A.

J. O. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
[CrossRef]

Yin, E.

Yu, J.

Appl. Opt. (2)

Appl. Phys. Lett. (4)

J. O. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
[CrossRef]

J. P. Huignard, F. Micheron, “High-sensitivity read-write volume holographic storage in Bi12SiO20 and Bi12GeO20 crystals,” Appl. Phys. Lett. 29, 591–593 (1976).
[CrossRef]

R. B. Bylsma, P. M. Bridenbaugh, D. H. Olson, A. M. Glass, “Photorefractive properties of doped cadmium telluride,” Appl. Phys. Lett. 51, 889–891 (1987).
[CrossRef]

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

J. Appl. Phys. (4)

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, “Photorefractive properties of strontium-barium niobate,” J. Appl. Phys. 62, 374–380 (1987).
[CrossRef]

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

D. L. Staebler, J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

P. Refregier, L. Solymar, H. Rajbenbach, J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with a moving grating,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Y. T. Mazurenko, V. S. Udaltsov, A. V. Veniaminov, E. Dopel, P. Kuhmstedt, “Recording and reconstruction of femtosecond light pulses using volume holograms,” Opt. Commun. 96, 202–207 (1993).
[CrossRef]

Opt. Lett. (7)

Sov. J. Quantum Electron. (1)

V. V. Voronov, I. R. Dorosh, Y. S. Kuz’minov, N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

Other (4)

See, for example, L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic, London, 1981).

B. Lee, “Optical programmable radio-frequency matched filtering using photorefractive effect,” Ph.D. dissertation (Department of Electrical Engineering, University of California, Berkeley, Berkeley, Calif., 1993).

H. Rajbenbach, C. Touret, J.-P. Huignard, M. Curon, C. Bricot, “Fingerprint database search by optical correlation,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 214–223 (1996).

P. Gunter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988); Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photorefractive holographic correlators: (a) Vanderlugt-type filter based on real-time four-wave mixing. (b) Correlations obtained through the readout of prerecorded reference-signal holograms.

Fig. 2
Fig. 2

Experimental setup. Electrical signals: A: 40.8575-MHz tone (timing control signal). B: 10-ns square Pockel pulses at a 4.08575-MHz repetition rate. C: 81.715-MHz tone. D: rf waveform with a 4.08575-MHz repetition rate. E: Mixed C and D signals. Det, detector.

Fig. 3
Fig. 3

rf signals and their spectral amplitudes together with the AOM electrical-to-optical conversion spectrum. Triggered with each optical pulse was a burst of (a) two periods of a 10-MHz square wave, (b) two periods of a 10-MHz sine wave, (c) one period of a 5-MHz square wave, and (d) one period of a 5-MHz sine wave.

Fig. 4
Fig. 4

Time-resolved readout of the 5-MHz sine-waveform hologram by the corresponding 5-MHz sine-waveform rf signal. Readout was at an increased optical pulse rate of 81.715 MHz. The solid curve indicates the squared correlation calculated by use of expression (2).

Fig. 5
Fig. 5

Diffracted beam profiles from the readout of the holograms of the (a) 10-MHz square waveform, (b) 10-MHz sine waveform, (c) 5-MHz square waveform, and (d) 5-MHz sine rf waveform by each of the four rf signals. Readout pulses were kept at the 4.08575-MHz waveform repetition rate. Square roots of the areas under the diffracted profiles are compared with the calculated correlations listed in Table 1.

Tables (1)

Tables Icon

Table 1 Measured and Calculated Waveform Correlations srfReadout * srfRecorded Normalized by the Autocorrelations

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

StexpiKz-ωtkx=2πndBkxvSkx×AxSrfx-vstexpikxx-vst.
Idifftkx=2πndBkxvs2kxAxSrfReadout×x-vstkx*AxSrfRecordedx-vst02=kx=2πndBkxvs2kxAxSrfReadout×x-vst*AxSrfRecordedx-vst02SrfReadoutt*SrfRecordedt02.

Metrics