Abstract

We propose an all-optical packet-switching scheme in multihop shuffle networks in which deflection routing is used as its contention-resolution principle. In our scheme only partial address information in the packet header is read before a routing decision is made. Because the new scheme does not involve a time-consuming look-up table, extremely low latency operation is possible at each node. Moreover, because the number of demultiplexers at each node can be kept constant even though the network size changes, cost-effective design of a node is possible.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Hluchyj and M. J. Karol, “ShuffleNet: An application of generalized perfect shuffles to multihop lightwave networks,” in Proceedings of IEEE INFOCOM, R. Rutledge and A. Leon-Garcia, eds. (IEEE, New York, 1988), pp. 4B.4.1–4B.4.5.
  2. A. Krishna and B. Hajek, “Performance of shuffle-like switching networks with deflection,” in Proceedings of IEEE INFOCOM, M. Gerla and J. Silvester, eds. (IEEE, New York, 1990), Vol. 2, pp. 473–480.
  3. N. F. Maxemchuk, “Comparison of deflection and store-and-forward techniques in the Manhattan street and shuffle-exchange networks,” in Proceedings of IEEE INFOCOM, C. Desmond and J. Silvestor, eds. (IEEE, New York, 1989), pp. 800–809.
  4. A. Acampora and S. Shah, “Multihop lightwave networks: A comparison of store-and-forward and hot-potato routing,” IEEE Trans. Commun. 40, 1082–1090 (1992).
    [CrossRef]
  5. D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE Trans. Comput. C-24, 1145–1155 (1975).
    [CrossRef]
  6. P. R. Prucnal, “Optically-process self-routing, synchronization and contention resolution for 1D and 2D photonic switching architectures,” IEEE J. Quantum Electron. 29, 600–612 (1993).
    [CrossRef]
  7. D. M. Spirit, A. D. Ellis, and P.E. Barnsley, “Optical time division multiplexing: systems and networks,” IEEE Commun. Mag. 32, 56–62 (1994).
    [CrossRef]
  8. P. A. Perrier and P. R. Prucnal, “Self-clocked optical control of a self-routed photonic switch,” IEEE J. Lightwave Technol. 7, 983–989 (1986).
    [CrossRef]

1994 (1)

D. M. Spirit, A. D. Ellis, and P.E. Barnsley, “Optical time division multiplexing: systems and networks,” IEEE Commun. Mag. 32, 56–62 (1994).
[CrossRef]

1993 (1)

P. R. Prucnal, “Optically-process self-routing, synchronization and contention resolution for 1D and 2D photonic switching architectures,” IEEE J. Quantum Electron. 29, 600–612 (1993).
[CrossRef]

1992 (1)

A. Acampora and S. Shah, “Multihop lightwave networks: A comparison of store-and-forward and hot-potato routing,” IEEE Trans. Commun. 40, 1082–1090 (1992).
[CrossRef]

1986 (1)

P. A. Perrier and P. R. Prucnal, “Self-clocked optical control of a self-routed photonic switch,” IEEE J. Lightwave Technol. 7, 983–989 (1986).
[CrossRef]

1975 (1)

D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE Trans. Comput. C-24, 1145–1155 (1975).
[CrossRef]

Acampora, A.

A. Acampora and S. Shah, “Multihop lightwave networks: A comparison of store-and-forward and hot-potato routing,” IEEE Trans. Commun. 40, 1082–1090 (1992).
[CrossRef]

Barnsley, P.E.

D. M. Spirit, A. D. Ellis, and P.E. Barnsley, “Optical time division multiplexing: systems and networks,” IEEE Commun. Mag. 32, 56–62 (1994).
[CrossRef]

Ellis, A. D.

D. M. Spirit, A. D. Ellis, and P.E. Barnsley, “Optical time division multiplexing: systems and networks,” IEEE Commun. Mag. 32, 56–62 (1994).
[CrossRef]

Lawrie, D. H.

D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE Trans. Comput. C-24, 1145–1155 (1975).
[CrossRef]

Perrier, P. A.

P. A. Perrier and P. R. Prucnal, “Self-clocked optical control of a self-routed photonic switch,” IEEE J. Lightwave Technol. 7, 983–989 (1986).
[CrossRef]

Prucnal, P. R.

P. R. Prucnal, “Optically-process self-routing, synchronization and contention resolution for 1D and 2D photonic switching architectures,” IEEE J. Quantum Electron. 29, 600–612 (1993).
[CrossRef]

P. A. Perrier and P. R. Prucnal, “Self-clocked optical control of a self-routed photonic switch,” IEEE J. Lightwave Technol. 7, 983–989 (1986).
[CrossRef]

Shah, S.

A. Acampora and S. Shah, “Multihop lightwave networks: A comparison of store-and-forward and hot-potato routing,” IEEE Trans. Commun. 40, 1082–1090 (1992).
[CrossRef]

Spirit, D. M.

D. M. Spirit, A. D. Ellis, and P.E. Barnsley, “Optical time division multiplexing: systems and networks,” IEEE Commun. Mag. 32, 56–62 (1994).
[CrossRef]

IEEE Commun. Mag. (1)

D. M. Spirit, A. D. Ellis, and P.E. Barnsley, “Optical time division multiplexing: systems and networks,” IEEE Commun. Mag. 32, 56–62 (1994).
[CrossRef]

IEEE J. Lightwave Technol. (1)

P. A. Perrier and P. R. Prucnal, “Self-clocked optical control of a self-routed photonic switch,” IEEE J. Lightwave Technol. 7, 983–989 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. R. Prucnal, “Optically-process self-routing, synchronization and contention resolution for 1D and 2D photonic switching architectures,” IEEE J. Quantum Electron. 29, 600–612 (1993).
[CrossRef]

IEEE Trans. Commun. (1)

A. Acampora and S. Shah, “Multihop lightwave networks: A comparison of store-and-forward and hot-potato routing,” IEEE Trans. Commun. 40, 1082–1090 (1992).
[CrossRef]

IEEE Trans. Comput. (1)

D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE Trans. Comput. C-24, 1145–1155 (1975).
[CrossRef]

Other (3)

M. G. Hluchyj and M. J. Karol, “ShuffleNet: An application of generalized perfect shuffles to multihop lightwave networks,” in Proceedings of IEEE INFOCOM, R. Rutledge and A. Leon-Garcia, eds. (IEEE, New York, 1988), pp. 4B.4.1–4B.4.5.

A. Krishna and B. Hajek, “Performance of shuffle-like switching networks with deflection,” in Proceedings of IEEE INFOCOM, M. Gerla and J. Silvester, eds. (IEEE, New York, 1990), Vol. 2, pp. 473–480.

N. F. Maxemchuk, “Comparison of deflection and store-and-forward techniques in the Manhattan street and shuffle-exchange networks,” in Proceedings of IEEE INFOCOM, C. Desmond and J. Silvestor, eds. (IEEE, New York, 1989), pp. 800–809.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Eight-node shuffle network. (b) Output representation of a 4 × 4 switch.

Fig. 2
Fig. 2

Packet and a clock pulse in orthogonal polarization.

Fig. 3
Fig. 3

Example between source node 6 and destination node 2.

Fig. 4
Fig. 4

Implementation of the BLPS scheme with two 2 × 2 switches; solid lines are optical signal paths and dashed lines are electronic signal paths. The 2 × 2 switch is set to be in a cross (straight) state if the control signal is 1 (0).

Fig. 5
Fig. 5

Simplified BLPS scheme with one 2 × 2 switch (only the clock positioning part is shown).

Fig. 6
Fig. 6

Two-stage tunable delay line to control the initial position of a clock pulse.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T=δ2k-1δ2k-2  δkdk-1dk-2  d1d0,
TR=dOd1  dk-2dk-1δk  δ2k-2δ2k-1.
T=100  100k-10 DC nodes0b1kb0k0b1k-1b0k-1  0b10b00k care nodes011RX port in destination node;
TR=110RX port in destination nodeb00b100  b0k-1b1k-10b0kb1k0k care nodes001001k-1 DC nodes,

Metrics