Abstract

The design, modeling, and experimental characterization of a microchannel-based free-space optical interconnect is described. The microchannel interconnect was used to implement a representative portion of an optical backplane that was based on field-effect transistor, self-electro-optic device smart-pixel transceivers. Telecentric relays were used to form the optical interconnect, and two modes based on two different optical window clusterings were implemented. The optical system design, including the optical geometry for different degrees of clustering of windows supported by a lenslet relay and the image mapping associated with a free-space optical system, is described. A comparison of the optical beam properties at the device planes, including the spot size and power uniformity of the spot array, as well as the effects of clipping and misalignment for the different operating modes, is presented. In addition, the effects of beam clipping and misalignment for the different operating modes is presented. We show that microchannel free-space optical interconnects based on a window-clustering scheme significantly increase the connection density. A connection density of 2222 connections/cm2 was achieved for this prototype system with 2 × 2 window clustering.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. I. Leonberger, S. Y. Kung, and R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–875 (1984).
    [CrossRef]
  2. N. C. Craft and A. Y. Feldblum, “Optical interconnects based on arrays of surface-emitting lasers and lenslets,” Appl. Opt. 31, 1735–1739 (1992).
    [CrossRef] [PubMed]
  3. R. K. Kostuk, J. H. Yeh, and M. Fink, “Distributed optical data bus for board-level interconnects,” Appl. Opt. 32, 5010–5021 (1993).
    [CrossRef] [PubMed]
  4. T. Kato, F. Yuuki, K. Tanaka, H. Tanaka, H. Masuda, T. Tanoue, A. Oishi, K. Ito, K. Murakami, and T. Teraoka, “21 Gbits/s cm2 throughput density two-dimensional array optical interconnection construction,” Electron. Lett. 17, 1722–1723 (1993).
    [CrossRef]
  5. D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet array,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
    [CrossRef]
  6. B. Robertson, G. C. Boisset, H. S. Hinton, Y. S. Liu, N. H. Kim, M. R. Otazo, D. Pavlasek, D. V. Plant, D. Rolston, and V. M. Robertson, “Design of a lenslet array based free-space optical backplane demonstrator,” in Proceedings of the International Conference on Optical Computing, Vol. 139 of IOP Conference Proceedings (Institute of Physics, Bristol, UK, 1994), pp. 223–226.
  7. D. Rolson, B. Robertson, D. V. Plant, and H. S. Hinton, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996).
    [CrossRef]
  8. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Merserau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
    [CrossRef]
  9. S. Tang, R. T. Chen, L. Garrett, D. Gerold, and M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
    [CrossRef]
  10. K. Hamanaka, “Optical bus interconnection system using Selfoc lenses,” Opt. Lett. 16, 1222–1224 (1991).
    [CrossRef] [PubMed]
  11. D. V. Plant, A. Z. Shang, M. R. Otazo, D. R. Rolston, B. Robertson, and H. S. Hinton, “Design, modeling, and characterization of FET-SEED smart pixel transceiver array for optical backplanes,” J. Quantum Electron. (to be published).
  12. A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, E. J. Laskowski, S. S. Pei, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, L. E. Smith, and T. K. Woodward, “Field-effect-transistor self-electrooptic-effect-device (FET-SEED) electrically addressed differential modulator array,” Appl. Opt. 33, 2849–2855 (1994).
    [CrossRef] [PubMed]
  13. K. Tanaka and O. Kanzaki, “Focus of a diffracted Gaussian beam through a finite aperture lens: experimental and numerical investigations,” Appl. Opt. 26, 390–395 (1987).
    [CrossRef] [PubMed]
  14. F. B. McCormick, F. A. P. Tooley, J. L. Brubaker, J. M. Sasian, T. J. Cloonan, A. L. Lentine, S. J. Hinterlong, and M. J. Herron, “Optomechanics of a free-space switch: the system,” in Optomechanics and Dimensional Stability, R. A. Paquin and D. Vukobratoviich, eds., Proc. SPIE 1720 553–572 (1992).
  15. P. Belland and J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982).
    [CrossRef] [PubMed]
  16. S. M. Prince, C. P. Beauchamp, and F. A. P. Tooley, “Tolerancing of arrays of microlens relays: a case study,” J. Europ. Opt. Soc. Part A 3, 151–156 (1994).
    [CrossRef]
  17. W. C. Sweatt, “Mathematical equivalence between a holographic optical element and an ultra-high index lens,” J. Opt. Soc. Am. 69, 486–487 (1979).
    [CrossRef]
  18. D. C. Sinclair, “Designing diffractive optics using the Sweatt model,” Sinclair Opt. Design Notes 1 (1) (1990).
  19. J. N. Mait, “Design of binary-phase and multiphase Fourier gratings for array generation,” J. Opt. Soc. Am. A 7, 1514–1528 (1990).
    [CrossRef]
  20. M. P. Dames, R. J. Dowling, P. McKee, and D. Wood, “Efficient optical elements to generate intensity weighted spot arrays: design and fabrication,” Appl. Opt. 30, 2685–2691 (1991).
    [CrossRef] [PubMed]
  21. F. B. McCormick, “Generation of large spot arrays from a single laser beam by multiple imaging with binary phase gratings,” Opt. Eng. 28, 299–304 (1989).
    [CrossRef]
  22. F. B. McCormick, “Free-space interconnection techniques,” in Photonics in Switching, J. E. Midwinter, ed. (Academic, New York, 1993), pp. 185–189.
  23. J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” App. Opt. 29, 931–936 (1990).
    [CrossRef]
  24. A. E. Siegman, Laser (University Science, Mill Valley, Calif., 1986), Chap. 17.

1996 (1)

1995 (1)

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet array,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

1994 (3)

A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, E. J. Laskowski, S. S. Pei, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, L. E. Smith, and T. K. Woodward, “Field-effect-transistor self-electrooptic-effect-device (FET-SEED) electrically addressed differential modulator array,” Appl. Opt. 33, 2849–2855 (1994).
[CrossRef] [PubMed]

S. M. Prince, C. P. Beauchamp, and F. A. P. Tooley, “Tolerancing of arrays of microlens relays: a case study,” J. Europ. Opt. Soc. Part A 3, 151–156 (1994).
[CrossRef]

S. Tang, R. T. Chen, L. Garrett, D. Gerold, and M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
[CrossRef]

1993 (2)

R. K. Kostuk, J. H. Yeh, and M. Fink, “Distributed optical data bus for board-level interconnects,” Appl. Opt. 32, 5010–5021 (1993).
[CrossRef] [PubMed]

T. Kato, F. Yuuki, K. Tanaka, H. Tanaka, H. Masuda, T. Tanoue, A. Oishi, K. Ito, K. Murakami, and T. Teraoka, “21 Gbits/s cm2 throughput density two-dimensional array optical interconnection construction,” Electron. Lett. 17, 1722–1723 (1993).
[CrossRef]

1992 (2)

N. C. Craft and A. Y. Feldblum, “Optical interconnects based on arrays of surface-emitting lasers and lenslets,” Appl. Opt. 31, 1735–1739 (1992).
[CrossRef] [PubMed]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Merserau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

1991 (2)

1990 (2)

J. N. Mait, “Design of binary-phase and multiphase Fourier gratings for array generation,” J. Opt. Soc. Am. A 7, 1514–1528 (1990).
[CrossRef]

J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” App. Opt. 29, 931–936 (1990).
[CrossRef]

1989 (1)

F. B. McCormick, “Generation of large spot arrays from a single laser beam by multiple imaging with binary phase gratings,” Opt. Eng. 28, 299–304 (1989).
[CrossRef]

1987 (1)

1984 (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, and R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–875 (1984).
[CrossRef]

1982 (1)

1979 (1)

Athale, R. A.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, and R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–875 (1984).
[CrossRef]

Beauchamp, C. P.

S. M. Prince, C. P. Beauchamp, and F. A. P. Tooley, “Tolerancing of arrays of microlens relays: a case study,” J. Europ. Opt. Soc. Part A 3, 151–156 (1994).
[CrossRef]

Belland, P.

Boisset, G. C.

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet array,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Chen, R. T.

S. Tang, R. T. Chen, L. Garrett, D. Gerold, and M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
[CrossRef]

Chirovsky, L. M. F.

Cloonan, T. J.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Merserau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Craft, N. C.

Crenn, J. P.

D’Asaro, L. A.

Dames, M. P.

Dowling, R. J.

Feldblum, A. Y.

N. C. Craft and A. Y. Feldblum, “Optical interconnects based on arrays of surface-emitting lasers and lenslets,” Appl. Opt. 31, 1735–1739 (1992).
[CrossRef] [PubMed]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Merserau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Fink, M.

Focht, M. W.

Freund, J. M.

Garrett, L.

S. Tang, R. T. Chen, L. Garrett, D. Gerold, and M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
[CrossRef]

Gerold, D.

S. Tang, R. T. Chen, L. Garrett, D. Gerold, and M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
[CrossRef]

Goodman, J. W.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, and R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–875 (1984).
[CrossRef]

Guth, G. D.

Hamanaka, K.

Hinton, H. S.

D. Rolson, B. Robertson, D. V. Plant, and H. S. Hinton, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996).
[CrossRef]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet array,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Merserau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Ito, K.

T. Kato, F. Yuuki, K. Tanaka, H. Tanaka, H. Masuda, T. Tanoue, A. Oishi, K. Ito, K. Murakami, and T. Teraoka, “21 Gbits/s cm2 throughput density two-dimensional array optical interconnection construction,” Electron. Lett. 17, 1722–1723 (1993).
[CrossRef]

Jahns, J.

J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” App. Opt. 29, 931–936 (1990).
[CrossRef]

Kanzaki, O.

Kato, T.

T. Kato, F. Yuuki, K. Tanaka, H. Tanaka, H. Masuda, T. Tanoue, A. Oishi, K. Ito, K. Murakami, and T. Teraoka, “21 Gbits/s cm2 throughput density two-dimensional array optical interconnection construction,” Electron. Lett. 17, 1722–1723 (1993).
[CrossRef]

Kim, N. H.

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet array,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Kostuk, R. K.

Kung, S. Y.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, and R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–875 (1984).
[CrossRef]

Laskowski, E. J.

Leibenguth, R. E.

Lentine, A. L.

Leonberger, F. I.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, and R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–875 (1984).
[CrossRef]

Li, M. M.

S. Tang, R. T. Chen, L. Garrett, D. Gerold, and M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
[CrossRef]

Liu, Y. S.

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet array,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Mait, J. N.

Masuda, H.

T. Kato, F. Yuuki, K. Tanaka, H. Tanaka, H. Masuda, T. Tanoue, A. Oishi, K. Ito, K. Murakami, and T. Teraoka, “21 Gbits/s cm2 throughput density two-dimensional array optical interconnection construction,” Electron. Lett. 17, 1722–1723 (1993).
[CrossRef]

McCormick, F. B.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Merserau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

F. B. McCormick, “Generation of large spot arrays from a single laser beam by multiple imaging with binary phase gratings,” Opt. Eng. 28, 299–304 (1989).
[CrossRef]

McKee, P.

Merserau, K. O.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Merserau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Murakami, K.

T. Kato, F. Yuuki, K. Tanaka, H. Tanaka, H. Masuda, T. Tanoue, A. Oishi, K. Ito, K. Murakami, and T. Teraoka, “21 Gbits/s cm2 throughput density two-dimensional array optical interconnection construction,” Electron. Lett. 17, 1722–1723 (1993).
[CrossRef]

Oishi, A.

T. Kato, F. Yuuki, K. Tanaka, H. Tanaka, H. Masuda, T. Tanoue, A. Oishi, K. Ito, K. Murakami, and T. Teraoka, “21 Gbits/s cm2 throughput density two-dimensional array optical interconnection construction,” Electron. Lett. 17, 1722–1723 (1993).
[CrossRef]

Otazo, M. R.

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet array,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Pei, S. S.

Plant, D. V.

D. Rolson, B. Robertson, D. V. Plant, and H. S. Hinton, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996).
[CrossRef]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet array,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Prince, S. M.

S. M. Prince, C. P. Beauchamp, and F. A. P. Tooley, “Tolerancing of arrays of microlens relays: a case study,” J. Europ. Opt. Soc. Part A 3, 151–156 (1994).
[CrossRef]

Robertson, B.

D. Rolson, B. Robertson, D. V. Plant, and H. S. Hinton, “Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,” Appl. Opt. 35, 1220–1233 (1996).
[CrossRef]

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet array,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Robertson, W. M.

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet array,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Rolson, D.

Rolston, D. R.

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet array,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Sasian, J. M.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Merserau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Shang, A. Z.

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet array,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

Smith, L. E.

Sweatt, W. C.

Tanaka, H.

T. Kato, F. Yuuki, K. Tanaka, H. Tanaka, H. Masuda, T. Tanoue, A. Oishi, K. Ito, K. Murakami, and T. Teraoka, “21 Gbits/s cm2 throughput density two-dimensional array optical interconnection construction,” Electron. Lett. 17, 1722–1723 (1993).
[CrossRef]

Tanaka, K.

T. Kato, F. Yuuki, K. Tanaka, H. Tanaka, H. Masuda, T. Tanoue, A. Oishi, K. Ito, K. Murakami, and T. Teraoka, “21 Gbits/s cm2 throughput density two-dimensional array optical interconnection construction,” Electron. Lett. 17, 1722–1723 (1993).
[CrossRef]

K. Tanaka and O. Kanzaki, “Focus of a diffracted Gaussian beam through a finite aperture lens: experimental and numerical investigations,” Appl. Opt. 26, 390–395 (1987).
[CrossRef] [PubMed]

Tang, S.

S. Tang, R. T. Chen, L. Garrett, D. Gerold, and M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
[CrossRef]

Tanoue, T.

T. Kato, F. Yuuki, K. Tanaka, H. Tanaka, H. Masuda, T. Tanoue, A. Oishi, K. Ito, K. Murakami, and T. Teraoka, “21 Gbits/s cm2 throughput density two-dimensional array optical interconnection construction,” Electron. Lett. 17, 1722–1723 (1993).
[CrossRef]

Teraoka, T.

T. Kato, F. Yuuki, K. Tanaka, H. Tanaka, H. Masuda, T. Tanoue, A. Oishi, K. Ito, K. Murakami, and T. Teraoka, “21 Gbits/s cm2 throughput density two-dimensional array optical interconnection construction,” Electron. Lett. 17, 1722–1723 (1993).
[CrossRef]

Tooley, F. A. P.

S. M. Prince, C. P. Beauchamp, and F. A. P. Tooley, “Tolerancing of arrays of microlens relays: a case study,” J. Europ. Opt. Soc. Part A 3, 151–156 (1994).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Merserau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Walker, S. J.

J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” App. Opt. 29, 931–936 (1990).
[CrossRef]

Wood, D.

Woodward, T. K.

Yeh, J. H.

Yuuki, F.

T. Kato, F. Yuuki, K. Tanaka, H. Tanaka, H. Masuda, T. Tanoue, A. Oishi, K. Ito, K. Murakami, and T. Teraoka, “21 Gbits/s cm2 throughput density two-dimensional array optical interconnection construction,” Electron. Lett. 17, 1722–1723 (1993).
[CrossRef]

App. Opt. (1)

J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” App. Opt. 29, 931–936 (1990).
[CrossRef]

Appl. Opt. (7)

Electron. Lett. (1)

T. Kato, F. Yuuki, K. Tanaka, H. Tanaka, H. Masuda, T. Tanoue, A. Oishi, K. Ito, K. Murakami, and T. Teraoka, “21 Gbits/s cm2 throughput density two-dimensional array optical interconnection construction,” Electron. Lett. 17, 1722–1723 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet array,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
[CrossRef]

J. Europ. Opt. Soc. Part A (1)

S. M. Prince, C. P. Beauchamp, and F. A. P. Tooley, “Tolerancing of arrays of microlens relays: a case study,” J. Europ. Opt. Soc. Part A 3, 151–156 (1994).
[CrossRef]

J. Lightwave Technol. (1)

S. Tang, R. T. Chen, L. Garrett, D. Gerold, and M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

F. B. McCormick, “Generation of large spot arrays from a single laser beam by multiple imaging with binary phase gratings,” Opt. Eng. 28, 299–304 (1989).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Merserau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Proc. IEEE (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, and R. A. Athale, “Optical interconnects for VLSI systems,” Proc. IEEE 72, 850–875 (1984).
[CrossRef]

Other (6)

B. Robertson, G. C. Boisset, H. S. Hinton, Y. S. Liu, N. H. Kim, M. R. Otazo, D. Pavlasek, D. V. Plant, D. Rolston, and V. M. Robertson, “Design of a lenslet array based free-space optical backplane demonstrator,” in Proceedings of the International Conference on Optical Computing, Vol. 139 of IOP Conference Proceedings (Institute of Physics, Bristol, UK, 1994), pp. 223–226.

D. V. Plant, A. Z. Shang, M. R. Otazo, D. R. Rolston, B. Robertson, and H. S. Hinton, “Design, modeling, and characterization of FET-SEED smart pixel transceiver array for optical backplanes,” J. Quantum Electron. (to be published).

F. B. McCormick, F. A. P. Tooley, J. L. Brubaker, J. M. Sasian, T. J. Cloonan, A. L. Lentine, S. J. Hinterlong, and M. J. Herron, “Optomechanics of a free-space switch: the system,” in Optomechanics and Dimensional Stability, R. A. Paquin and D. Vukobratoviich, eds., Proc. SPIE 1720 553–572 (1992).

D. C. Sinclair, “Designing diffractive optics using the Sweatt model,” Sinclair Opt. Design Notes 1 (1) (1990).

F. B. McCormick, “Free-space interconnection techniques,” in Photonics in Switching, J. E. Midwinter, ed. (Academic, New York, 1993), pp. 185–189.

A. E. Siegman, Laser (University Science, Mill Valley, Calif., 1986), Chap. 17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Schematic of a unidirectional microchannel optical interconnect.

Fig. 2
Fig. 2

Layout of one lenslet supporting two connections.

Fig. 3
Fig. 3

Layout of one lenslet supporting 4 × 4 connections.

Fig. 4
Fig. 4

Connection density with different window-clustering schemes: (a) for window clustering as shown in Fig. 2 and (b) for window clustering as shown in Fig. 3.

Fig. 5
Fig. 5

Coordinate system for image mapping.

Fig. 6
Fig. 6

Optical layout for image mapping between the beams from clustered transceiver arrays.

Fig. 7
Fig. 7

Schematic of the optical system used in the backplane demonstrator. PCB_1 and PCB_2 are the print circuit boards where the FET-SEED transmitter and FET-SEED receiver were mounted, respectively.

Fig. 8
Fig. 8

Photograph of the demonstrator system.

Fig. 9
Fig. 9

Spot array generated at the power plane. The optical beams in the solid-line boxes were used for the interconnection in the 2-clustered mode, and the beams in the dashed-line box were used for the (2 × 2)-clustered mode.

Fig. 10
Fig. 10

Schematic of the 2-clustered mode in which optical beams were relayed from the power plane to the transmitter plane.

Fig. 11
Fig. 11

Geometrical spot diagram at the power plane.

Fig. 12
Fig. 12

Optical power budget for the microchannel optical system operated in the 2-clustered mode.

Fig. 13
Fig. 13

Schematic of the (2 × 2)-clustered mode in which optical beams were relayed from the power plane to the transmitter plane.

Fig. 14
Fig. 14

Schematic of the “pull” effect for the beam waist when the diffraction effects resulting from clipping were taken into account. (a) Off-axis Gaussian beam without diffraction effects. (b) Off-axis Gaussian beam with diffraction effects, showing a minimum spot size closer to the first lens.

Fig. 15
Fig. 15

Optical spots at the transmitter plane for the 2-clustered mode: (a) spot pattern and (b) 3-D plot of the upper-left portion of spots.

Fig. 16
Fig. 16

Optical spots at the transmitter plane for the (2 × 2)-clustered mode: (a) spot pattern and (b) 3-D plot of the (2 × 2)-clustered spots shown in the box.

Fig. 17
Fig. 17

Optical spots at the receiver plane for the 2-clustered mode: (a) spot pattern and (b) 3-D plot of the upper-left portion of spots.

Fig. 18
Fig. 18

Optical spots at the receiver plane for the (2 × 2)-clustered mode: (a) spot pattern and (b) 3-D plot of the (2 × 2)-clustered spots shown in the box.

Tables (5)

Tables Icon

Table 1 Alignment Tolerance for the 2-Clustered Mode

Tables Icon

Table 2 Spot Power Uniformity of the BFG versus the NPS

Tables Icon

Table 3 Spot Size for the (2 × 2)-Clustered Mode at the Transmitter Plane

Tables Icon

Table 4 Spot Size for the 2-Clustered Mode at the Receiver Plane

Tables Icon

Table 5 Spot Size for the (2 × 2)-Clustered Mode at the Receiver Plane

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ωL=13DL-ds+dw.
ωL=ωd1+fλπωd221/2.
k=4-i+1i413-i4<i8, l=4+jj4j-44<j8.
η=14erf2ωa2-δx+erf2ωa2+δx×erf2ωb2-δy+erf2ωb2+δy,
erfx=220x e-t2dt.
ωpwr=fλπωBPG.
S=2fλP.
CR=π3NPS.

Metrics