Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Small-bore hollow waveguides for delivery of 3-μm laser radiation

Not Accessible

Your library or personal account may give you access

Abstract

Flexible hollow glass waveguides with bore diameters as small as 250 μm have been developed for 3-μm laser delivery. All the guides exhibit straight losses between 0.10 and 1.73 dB/m, and the loss increases to between 2.4 and 5.1 dB/m upon bending 1 m of the guides into 15-cm-diameter coils. This behavior is shown to depend strongly on the launch conditions and mode quality of the input beam. The waveguides are capable of efficiently delivering up to 8 W of Er:YAG laser power with proper input coupling, and they are suitable for use in both medical and industrial applications.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical properties of small-bore hollow glass waveguides

Yuji Matsuura, Todd Abel, and James. A. Harrington
Appl. Opt. 34(30) 6842-6847 (1995)

High-peak-power, pulsed CO2 laser light delivery by hollow glass waveguides

Jiwang Dai and James A. Harrington
Appl. Opt. 36(21) 5072-5077 (1997)

Hollow-waveguide delivery systems for high-power, industrial CO2 lasers

Ricky K. Nubling and James A. Harrington
Appl. Opt. 35(3) 372-380 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.